ترغب بنشر مسار تعليمي؟ اضغط هنا

1 x 1 Rush Hour with Fixed Blocks is PSPACE-complete

80   0   0.0 ( 0 )
 نشر من قبل Erik Demaine
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Consider $n^2-1$ unit-square blocks in an $n times n$ square board, where each block is labeled as movable horizontally (only), movable vertically (only), or immovable -- a variation of Rush Hour with only $1 times 1$ cars and fixed blocks. We prove that it is PSPACE-complete to decide whether a given block can reach the left edge of the board, by reduction from Nondeterministic Constraint Logic via 2-color oriented Subway Shuffle. By contrast, polynomial-time algorithms are known for deciding whether a given block can be moved by one space, or when each block either is immovable or can move both horizontally and vertically. Our result answers a 15-year-old open problem by Tromp and Cilibrasi, and strengthens previous PSPACE-completeness results for Rush Hour with vertical $1 times 2$ and horizontal $2 times 1$ movable blocks and 4-color Subway Shuffle.



قيم البحث

اقرأ أيضاً

In the Nikoli pencil-and-paper game Tatamibari, a puzzle consists of an $m times n$ grid of cells, where each cell possibly contains a clue among +, -, |. The goal is to partition the grid into disjoint rectangles, where every rectangle contains exac tly one clue, rectangles containing + are square, rectangles containing - are strictly longer horizontally than vertically, rectangles containing | are strictly longer vertically than horizontally, and no four rectangles share a corner. We prove this puzzle NP-complete, establishing a Nikoli gap of 16 years. Along the way, we introduce a gadget framework for proving hardness of similar puzzles involving area coverage, and show that it applies to an existing NP-hardness proof for Spiral Galaxies. We also present a mathematical puzzle font for Tatamibari.
Exactly 20 years ago at MFCS, Demaine posed the open problem whether the game of Dots & Boxes is PSPACE-complete. Dots & Boxes has been studied extensively, with for instance a chapter in Berlekamp et al. Winning Ways for Your Mathematical Plays, a w hole book on the game The Dots and Boxes Game: Sophisticated Childs Play by Berlekamp, and numerous articles in the Games of No Chance series. While known to be NP-hard, the question of its complexity remained open. We resolve this question, proving that the game is PSPACE-complete by a reduction from a game played on propositional formulas.
We show that the decision problem of determining whether a given (abstract simplicial) $k$-complex has a geometric embedding in $mathbb R^d$ is complete for the Existential Theory of the Reals for all $dgeq 3$ and $kin{d-1,d}$. This implies that the problem is polynomial time equivalent to determining whether a polynomial equation system has a real root. Moreover, this implies NP-hardness and constitutes the first hardness results for the algorithmic problem of geometric embedding (abstract simplicial) complexes.
We prove PSPACE-completeness of all but one problem in a large space of pulling-block problems where the goal is for the agent to reach a target destination. The problems are parameterized by whether pulling is optional, the number of blocks which ca n be pulled simultaneously, whether there are fixed blocks or thin walls, and whether there is gravity. We show NP-hardness for the remaining problem, Pull?-1FG (optional pulling, strength 1, fixed blocks, with gravity).
We prove that Strings-and-Coins -- the combinatorial two-player game generalizing the dual of Dots-and-Boxes -- is strongly PSPACE-complete on multigraphs. This result improves the best previous result, NP-hardness, argued in Winning Ways. Our result also applies to the Nimstring variant, where the winner is determined by normal play; indeed, one step in our reduction is the standard reduction (also from Winning Ways) from Nimstring to Strings-and-Coins.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا