ترغب بنشر مسار تعليمي؟ اضغط هنا

Morse Quasiflats II

188   0   0.0 ( 0 )
 نشر من قبل Jingyin Huang
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This is the second in a two part series of papers concerning Morse quasiflats - higher dimensional analogs of Morse quasigeodesics. Our focus here is on their asymptotic structure. In metric spaces with convex geodesic bicombings, we prove asymptotic conicality, uniqueness of tangent cones at infinity and Euclidean volume growth rigidity for Morse quasiflats. Moreover, we provide some immediate consequences.



قيم البحث

اقرأ أيضاً

This is the first in a series of papers concerned with Morse quasiflats, which are a generalization of Morse quasigeodesics to arbitrary dimension. In this paper we introduce a number of alternative definitions, and under appropriate assumptions on t he ambient space we show that they are equivalent and quasi-isometry invariant; we also give a variety of examples. The second paper proves that Morse quasiflats are asymptotically conical and have canonically defined Tits boundaries; it also gives some first applications.
We build an analogue of the Gromov boundary for any proper geodesic metric space, hence for any finitely generated group. More precisely, for any proper geodesic metric space $X$ and any sublinear function $kappa$, we construct a boundary for $X$, de noted $mathcal{partial}_{kappa} X$, that is quasi-isometrically invariant and metrizable. As an application, we show that when $G$ is the mapping class group of a finite type surface, or a relatively hyperbolic group, then with minimal assumptions the Poisson boundary of $G$ can be realized on the $kappa$-Morse boundary of $G$ equipped the word metric associated to any finite generating set.
We construct examples of smooth 4-dimensional manifolds M supporting a locally CAT(0)-metric, whose universal cover X satisfy Hruskas isolated flats condition, and contain 2-dimensional flats F with the property that the boundary at infinity of F def ines a nontrivial knot in the boundary at infinity of X. As a consequence, we obtain that the fundamental group of M cannot be isomorphic to the fundamental group of any Riemannian manifold of nonpositive sectional curvature. In particular, M is a locally CAT(0)-manifold which does not support any Riemannian metric of nonpositive sectional curvature.
Let $G$ be a finite group with symmetric generating set $S$, and let $c = max_{R > 0} |B(2R)|/|B(R)|$ be the doubling constant of the corresponding Cayley graph, where $B(R)$ denotes an $R$-ball in the word-metric with respect to $S$. We show that th e multiplicity of the $k$th eigenvalue of the Laplacian on the Cayley graph of $G$ is bounded by a function of only $c$ and $k$. More specifically, the multiplicity is at most $exp((log c)(log c + log k))$. Similarly, if $X$ is a compact, $n$-dimensional Riemannian manifold with non-negative Ricci curvature, then the multiplicity of the $k$th eigenvalue of the Laplace-Beltrami operator on $X$ is at most $exp(n^2 + n log k)$. The first result (for $k=2$) yields the following group-theoretic application. There exists a normal subgroup $N$ of $G$, with $[G : N] leq alpha(c)$, and such that $N$ admits a homomorphism onto the cyclic group $Z_M$, where $M geq |G|^{delta(c)}$ and $alpha(c), delta(c) > 0$ are explicit functions depending only on $c$. This is the finitary analog of a theorem of Gromov which states that every infinite group of polynomial growth has a subgroup of finite index which admits a homomorphism onto the integers. This addresses a question of Trevisan, and is proved by scaling down Kleiners proof of Gromovs theorem. In particular, we replace the space of harmonic functions of fixed polynomial growth by the second eigenspace of the Laplacian on the Cayley graph of $G$.
We study left-invariant distances on Lie groups for which there exists a one-parameter family of homothetic automorphisms. The main examples are Carnot groups, in particular the Heisenberg group with the standard dilations. We are interested in crite ria implying that, locally and away from the diagonal, the distance is Euclidean Lipschitz and, consequently, that the metric spheres are boundaries of Lipschitz domains in the Euclidean sense. In the first part of the paper, we consider geodesic distances. In this case, we actually prove the regularity of the distance in the more general context of sub-Finsler manifolds with no abnormal geodesics. Secondly, for general groups we identify an algebraic criterium in terms of the dilating automorphisms, which for example makes us conclude the regularity of homogeneous distances on the Heisenberg group.In such a group, we analyze in more details the geometry of metric spheres. We also provide examples of homogeneous groups where spheres presents cusps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا