ﻻ يوجد ملخص باللغة العربية
Let $G$ be a finite group with symmetric generating set $S$, and let $c = max_{R > 0} |B(2R)|/|B(R)|$ be the doubling constant of the corresponding Cayley graph, where $B(R)$ denotes an $R$-ball in the word-metric with respect to $S$. We show that the multiplicity of the $k$th eigenvalue of the Laplacian on the Cayley graph of $G$ is bounded by a function of only $c$ and $k$. More specifically, the multiplicity is at most $exp((log c)(log c + log k))$. Similarly, if $X$ is a compact, $n$-dimensional Riemannian manifold with non-negative Ricci curvature, then the multiplicity of the $k$th eigenvalue of the Laplace-Beltrami operator on $X$ is at most $exp(n^2 + n log k)$. The first result (for $k=2$) yields the following group-theoretic application. There exists a normal subgroup $N$ of $G$, with $[G : N] leq alpha(c)$, and such that $N$ admits a homomorphism onto the cyclic group $Z_M$, where $M geq |G|^{delta(c)}$ and $alpha(c), delta(c) > 0$ are explicit functions depending only on $c$. This is the finitary analog of a theorem of Gromov which states that every infinite group of polynomial growth has a subgroup of finite index which admits a homomorphism onto the integers. This addresses a question of Trevisan, and is proved by scaling down Kleiners proof of Gromovs theorem. In particular, we replace the space of harmonic functions of fixed polynomial growth by the second eigenspace of the Laplacian on the Cayley graph of $G$.
Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with respect to the distance. We
Let $(X,d)$ be an $n$-dimensional Alexandrov space whose Hausdorff measure $mathcal{H}^n$ satisfies a condition giving the metric measure space $(X,d,mathcal{H}^n)$ a notion of having nonnegative Ricci curvature. We examine the influence of large vol
We consider harmonic functions of polynomial growth of some order $d$ on Cayley graphs of groups of polynomial volume growth of order $D$ w.r.t. the word metric and prove the optimal estimate for the dimension of the space of such harmonic functions.
We examine topological properties of pointed metric measure spaces $(Y, p)$ that can be realized as the pointed Gromov-Hausdorff limit of a sequence of complete, Riemannian manifolds ${(M^n_i, p_i)}_{i=1}^{infty}$ with nonnegative Ricci curvature. Ch
We construct examples of smooth 4-dimensional manifolds M supporting a locally CAT(0)-metric, whose universal cover X satisfy Hruskas isolated flats condition, and contain 2-dimensional flats F with the property that the boundary at infinity of F def