ترغب بنشر مسار تعليمي؟ اضغط هنا

On a doubly critical system involving fractional Laplacian with partial weight

148   0   0.0 ( 0 )
 نشر من قبل Yang Tao
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Tao Yang




اسأل ChatGPT حول البحث

In this paper, we establish a new improved Sobolev inequality based on a weighted Morrey space. To be precise, there exists $C=C(n,m,s,alpha)>0$ such that for any $u,v in {dot{H}}^s(mathbb{R}^{n})$ and for any $theta in (bar{theta},1)$, it holds that begin{equation} label{eq0.3} Big( int_{ mathbb{R}^{n} } frac{ |(uv)(y)|^{frac{2^*_{s}(alpha)}{2} } } { |y|^{alpha} } dy Big)^{ frac{1}{ 2^*_{s} (alpha) }} leq C ||u||_{{dot{H}}^s(mathbb{R}^{n})}^{frac{theta}{2}} ||v||_{{dot{H}}^s(mathbb{R}^{n})}^{frac{theta}{2}} ||(uv)||^{frac{1-theta}{2}}_{ L^{1,n-2s+r}(mathbb{R}^{n},|y|^{-r}) }, end{equation} where $s !in! (0,1)$, $0!<!alpha!<!2s!<!n$, $2s!<!m!<!n$, $bar{theta}=max { frac{2}{2^*_{s}(alpha)}, 1-frac{alpha}{s}cdotfrac{1}{2^*_{s}(alpha)}, frac{2^*_{s}(alpha)-frac{alpha}{s}}{2^*_{s}(alpha)-frac{2alpha}{m}} }$, $r=frac{2alpha}{ 2^*_{s}(alpha) }$ and $y!=!(y,y) in mathbb{R}^{m} times mathbb{R}^{n-m}$. By using mountain pass lemma and (ref{eq0.3}), we obtain a nontrivial weak solution to a doubly critical system involving fractional Laplacian in $mathbb{R}^{n}$ with partial weight in a direct way. Furthermore, we extend inequality (ref{eq0.3}) to more general forms on purpose of studying some general systems with partial weight, involving p-Laplacian especially.



قيم البحث

اقرأ أيضاً

In this paper we deal with the multiplicity of positive solutions to the fractional Laplacian equation begin{equation*} (-Delta)^{frac{alpha}{2}} u=lambda f(x)|u|^{q-2}u+|u|^{2^{*}_{alpha}-2}u, quadtext{in},,Omega, u=0,text{on},,partialOmega, end {equation*} where $Omegasubset mathbb{R}^{N}(Ngeq 2)$ is a bounded domain with smooth boundary, $0<alpha<2$, $(-Delta)^{frac{alpha}{2}}$ stands for the fractional Laplacian operator, $fin C(Omegatimesmathbb{R},mathbb{R})$ may be sign changing and $lambda$ is a positive parameter. We will prove that there exists $lambda_{*}>0$ such that the problem has at least two positive solutions for each $lambdain (0,,,lambda_{*})$. In addition, the concentration behavior of the solutions are investigated.
58 - Yimei Li , Jiguang Bao 2018
This paper is devoted to the fractional Laplacian system with critical exponents. We use the method of moving sphere to derive a Liouville Theorem, and then prove the solutions in R^n{0} are radially symmetric and monotonically decreasing radially. T ogether with blow up analysis and the Pohozaev integral, we get the upper and lower bound of the local solutions in B_1{0}. Our results is an extension of the classical work by Caffarelli et al [6, 7], Chen et al[16]
The main goal of this paper is the study of two kinds of nonlinear problems depending on parameters in unbounded domains. Using a nonstandard variational approach, we first prove the existence of bounded solutions for nonlinear eigenvalue problems in volving the fractional Laplace operator and nonlinearities that have subcritical growth. In the second part, based on a variational principle of Ricceri [16], we study a fractional nonlinear problem with two parameters and prove the existence of multiple solutions.
66 - Gongbao Li , Tao Yang 2019
In this paper, we consider the existence of nontrivial weak solutions to a double critical problem involving fractional Laplacian with a Hardy term: begin{equation} label{eq0.1} (-Delta)^{s}u-{gamma} {frac{u}{|x|^{2s}}}= {frac{{|u|}^{ {2^{*}_{s}}(bet a)-2}u}{|x|^{beta}}}+ big [ I_{mu}* F_{alpha}(cdot,u) big](x)f_{alpha}(x,u), u in {dot{H}}^s(R^{n}) end{equation} where $s in(0,1)$, $0leq alpha,beta<2s<n$, $mu in (0,n)$, $gamma<gamma_{H}$, $I_{mu}(x)=|x|^{-mu}$, $F_{alpha}(x,u)=frac{ {|u(x)|}^{ {2^{#}_{mu} }(alpha)} }{ {|x|}^{ {delta_{mu} (alpha)} } }$, $f_{alpha}(x,u)=frac{ {|u(x)|}^{{ 2^{#}_{mu} }(alpha)-2}u(x) }{ {|x|}^{ {delta_{mu} (alpha)} } }$, $2^{#}_{mu} (alpha)=(1-frac{mu}{2n})cdot 2^{*}_{s} (alpha)$, $delta_{mu} (alpha)=(1-frac{mu}{2n})alpha$, ${2^{*}_{s}}(alpha)=frac{2(n-alpha)}{n-2s}$ and $gamma_{H}=4^sfrac{Gamma^2(frac{n+2s}{4})} {Gamma^2(frac{n-2s}{4})}$. We show that problem (ref{eq0.1}) admits at least a weak solution under some conditions. To prove the main result, we develop some useful tools based on a weighted Morrey space. To be precise, we discover the embeddings begin{equation} label{eq0.2} {dot{H}}^s(R^{n}) hookrightarrow {L}^{2^*_{s}(alpha)}(R^{n},|y|^{-alpha}) hookrightarrow L^{p,frac{n-2s}{2}p+pr}(R^{n},|y|^{-pr}) end{equation} where $s in (0,1)$, $0<alpha<2s<n$, $pin[1,2^*_{s}(alpha))$, $r=frac{alpha}{ 2^*_{s}(alpha) }$; We also establish an improved Sobolev inequality. By using mountain pass lemma along with an improved Sobolev inequality, we obtain a nontrivial weak solution to problem (ref{eq0.1}) in a direct way. It is worth while to point out that the improved Sobolev inequality could be applied to simplify the proof of the main results in cite{NGSS} and cite{RFPP}.
175 - Jinguo Zhang , Xiaochun Liu 2014
We establish the existence and multiplicity of positive solutions to the problems involving the fractional Laplacian: begin{equation*} left{begin{array}{lll} &(-Delta)^{s}u=lambda u^{p}+f(u),,,u>0 quad &mbox{in},,Omega, &u=0quad &mbox{in},,mathbb{R}^ {N}setminusOmega, end{array}right. end{equation*} where $Omegasubset mathbb{R}^{N}$ $(Ngeq 2)$ is a bounded smooth domain, $sin (0,1)$, $p>0$, $lambdain mathbb{R}$ and $(-Delta)^{s}$ stands for the fractional Laplacian. When $f$ oscillates near the origin or at infinity, via the variational argument we prove that the problem has arbitrarily many positive solutions and the number of solutions to problem is strongly influenced by $u^{p}$ and $lambda$. Moreover, various properties of the solutions are also described in $L^{infty}$- and $X^{s}_{0}(Omega)$-norms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا