ﻻ يوجد ملخص باللغة العربية
This paper is devoted to the fractional Laplacian system with critical exponents. We use the method of moving sphere to derive a Liouville Theorem, and then prove the solutions in R^n{0} are radially symmetric and monotonically decreasing radially. Together with blow up analysis and the Pohozaev integral, we get the upper and lower bound of the local solutions in B_1{0}. Our results is an extension of the classical work by Caffarelli et al [6, 7], Chen et al[16]
In this paper, we establish a new improved Sobolev inequality based on a weighted Morrey space. To be precise, there exists $C=C(n,m,s,alpha)>0$ such that for any $u,v in {dot{H}}^s(mathbb{R}^{n})$ and for any $theta in (bar{theta},1)$, it holds that
In this article we present a simple and unified probabilistic approach to prove nonexistence of positive super-solutions for systems of equations involving potential terms and the fractional Laplacian in an exterior domain. Such problems arise in the
We study Liouville-type theorems and the asymptotic behaviour of positive solutions near an isolated singular point $zetainpartialOmegacup{infty}$ of the quasilinear elliptic equations $$-text{div}(| abla u|_A^{p-2}A abla u)+V|u|^{p-2}u =0quadtext{in
In this paper we deal with the multiplicity of positive solutions to the fractional Laplacian equation begin{equation*} (-Delta)^{frac{alpha}{2}} u=lambda f(x)|u|^{q-2}u+|u|^{2^{*}_{alpha}-2}u, quadtext{in},,Omega, u=0,text{on},,partialOmega, end
In this paper, we prove several Liouville type results for a nonlinear equation involving infinity Laplacian with gradient of the form $$Delta^gamma_infty u + q(x)cdot abla{u} | abla{u}|^{2-gamma} + f(x, u),=,0quad text{in}; mathbb{R}^d,$$ where $ga