ﻻ يوجد ملخص باللغة العربية
The non-random fluctuation is one of the central objects in first passage percolation. It was proved in [Shuta Nakajima. Divergence of non-random fluctuation in First Passage Percolation. {em Electron. Commun. Probab.} 24 (65), 1-13. 2019.] that for a particular asymptotic direction, it diverges in a lattice first passage percolation with an explicit lower bound. In this paper, we discuss the non-random fluctuation in Euclidean first passage percolations and show that it diverges in dimension $dgeq 2$ in this model also. Compared with the result in cite{N19}, the present result is proved for any direction and improves the lower bound.
Let a random geometric graph be defined in the supercritical regime for the existence of a unique infinite connected component in Euclidean space. Consider the first-passage percolation model with independent and identically distributed random variab
We study first-passage percolation where edges in the left and right half-planes are assigned values according to different distributions. We show that the asymptotic growth of the resulting inhomogeneous first-passage process obeys a shape theorem,
We study the growth of two competing infection types on graphs generated by the configuration model with a given degree sequence. Starting from two vertices chosen uniformly at random, the infection types spread via the edges in the graph in that an
We consider first-passage percolation with i.i.d. non-negative weights coming from some continuous distribution under a moment condition. We review recent results in the study of geodesics in first-passage percolation and study their implications for
One model of real-life spreading processes is First Passage Percolation (also called SI model) on random graphs. Social interactions often follow bursty patterns, which are usually modelled with i.i.d.~heavy-tailed passage times on edges. On the othe