ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulated annealing based heuristic for multiple agile satellites scheduling under cloud coverage uncertainty

70   0   0.0 ( 0 )
 نشر من قبل Xinwei Wang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Agile satellites are the new generation of Earth observation satellites (EOSs) with stronger attitude maneuvering capability. Since optical remote sensing instruments equipped on satellites cannot see through the cloud, the cloud coverage has a significant influence on the satellite observation missions. We are the first to address multiple agile EOSs scheduling problem under cloud coverage uncertainty where the objective aims to maximize the entire observation profit. The chance constraint programming model is adopted to describe the uncertainty initially, and the observation profit under cloud coverage uncertainty is then calculated via sample approximation method. Subsequently, an improved simulated annealing based heuristic combining a fast insertion strategy is proposed for large-scale observation missions. The experimental results show that the improved simulated annealing heuristic outperforms other algorithms for the multiple AEOSs scheduling problem under cloud coverage uncertainty, which verifies the efficiency and effectiveness of the proposed algorithm.



قيم البحث

اقرأ أيضاً

The Earth observation satellites (EOSs) are specially designed to collect images according to user requirements. The agile EOSs (AEOS), with stronger attitude maneuverability, greatly improve the observation capability, while increasing the complexit y in scheduling. We address a multiple AEOSs scheduling with multiple observations for the first time}, where the objective function aims to maximize the entire observation profit over a fixed horizon. The profit attained by multiple observations for each target is nonlinear to the number of observations. We model the multiple AEOSs scheduling as a specific interval scheduling problem with each satellite orbit respected as machine. Then A column generation based framework is developed to solve this problem, in which we deal with the pricing problems with a label-setting algorithm. Extensive simulations are conducted on the basis of a Chinas AEOS constellation, and the results indicate the optimality gap is less than 3% on average, which validates the performance of the scheduling solution obtained by the proposed framework. We also compare the framework in the conventional EOS scheduling.
The Earth observation satellites (EOSs) scheduling is of great importance to achieve efficient observation missions. The agile EOSs (AEOS) with stronger attitude maneuvering capacity can greatly improve observation efficiency while increasing schedul ing complexity. The multiple AEOSs, oversubscribed targets scheduling problem with multiple observations are addressed, and the potential observation missions are modeled as nodes in the complex networks. To solve the problem, an improved feedback structured heuristic is designed by defining the node and target importance factors. On the basis of a real world Chinese AEOS constellation, simulation experiments are conducted to validate the heuristic efficiency in comparison with a constructive algorithm and a structured genetic algorithm.
In model-based testing (MBT) we may have to deal with a non-deterministic model, e.g. because abstraction was applied, or because the software under test itself is non-deterministic. The same test case may then trigger multiple possible execution pat hs, depending on some internal decisions made by the software. Consequently, performing precise test analyses, e.g. to calculate the test coverage, are not possible. This can be mitigated if developers can annotate the model with estimated probabilities for taking each transition. A probabilistic model checking algorithm can subsequently be used to do simple probabilistic coverage analysis. However, in practice developers often want to know what the achieved aggregate coverage, which unfortunately cannot be re-expressed as a standard model checking problem. This paper presents an extension to allow efficient calculation of probabilistic aggregate coverage, and moreover also in combination with k-wise coverage.
This paper presents improved approximation algorithms for the problem of multiprocessor scheduling under uncertainty, or SUU, in which the execution of each job may fail probabilistically. This problem is motivated by the increasing use of distribute d computing to handle large, computationally intensive tasks. In the SUU problem we are given n unit-length jobs and m machines, a directed acyclic graph G of precedence constraints among jobs, and unrelated failure probabilities q_{ij} for each job j when executed on machine i for a single timestep. Our goal is to find a schedule that minimizes the expected makespan, which is the expected time at which all jobs complete. Lin and Rajaraman gave the first approximations for this NP-hard problem for the special cases of independent jobs, precedence constraints forming disjoint chains, and precedence constraints forming trees. In this paper, we present asymptotically better approximation algorithms. In particular, we give an O(loglog min(m,n))-approximation for independent jobs (improving on the previously best O(log n)-approximation). We also give an O(log(n+m) loglog min(m,n))-approximation algorithm for precedence constraints that form disjoint chains (improving on the previously best O(log(n)log(m)log(n+m)/loglog(n+m))-approximation by a (log n/loglog n)^2 factor when n = poly(m). Our algorithm for precedence constraints forming chains can also be used as a component for precedence constraints forming trees, yielding a similar improvement over the previously best algorithms for trees.
In this paper, we solve portfolio rebalancing problem when security returns are represented by uncertain variables considering transaction costs. The performance of the proposed model is studied using constant-proportion portfolio insurance (CPPI) as rebalancing strategy. Numerical results showed that uncertain parameters and different belief degrees will produce different efficient frontiers, and affect the performance of the proposed model. Moreover, CPPI strategy performs as an insurance mechanism and limits downside risk in bear markets while it allows potential benefit in bull markets. Finally, using a globally optimization solver and genetic algorithm (GA) for solving the model, we concluded that the problem size is an important factor in solving portfolio rebalancing problem with uncertain parameters and to gain better results, it is recommended to use a meta-heuristic algorithm rather than a global solver.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا