ترغب بنشر مسار تعليمي؟ اضغط هنا

Designing Tools for Semi-Automated Detection of Machine Learning Biases: An Interview Study

168   0   0.0 ( 0 )
 نشر من قبل Po-Ming Law
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Machine learning models often make predictions that bias against certain subgroups of input data. When undetected, machine learning biases can constitute significant financial and ethical implications. Semi-automated tools that involve humans in the loop could facilitate bias detection. Yet, little is known about the considerations involved in their design. In this paper, we report on an interview study with 11 machine learning practitioners for investigating the needs surrounding semi-automated bias detection tools. Based on the findings, we highlight four considerations in designing to guide system designers who aim to create future tools for bias detection.



قيم البحث

اقرأ أيضاً

324 - Daniel B. Neill 2017
We describe two recently proposed machine learning approaches for discovering emerging trends in fatal accidental drug overdoses. The Gaussian Process Subset Scan enables early detection of emerging patterns in spatio-temporal data, accounting for bo th the non-iid nature of the data and the fact that detecting subtle patterns requires integration of information across multiple spatial areas and multiple time steps. We apply this approach to 17 years of county-aggregated data for monthly opioid overdose deaths in the New York City metropolitan area, showing clear advantages in the utility of discovered patterns as compared to typical anomaly detection approaches. To detect and characterize emerging overdose patterns that differentially affect a subpopulation of the data, including geographic, demographic, and behavioral patterns (e.g., which combinations of drugs are involved), we apply the Multidimensional Tensor Scan to 8 years of case-level overdose data from Allegheny County, PA. We discover previously unidentified overdose patterns which reveal unusual demographic clusters, show impacts of drug legislation, and demonstrate potential for early detection and targeted intervention. These approaches to early detection of overdose patterns can inform prevention and response efforts, as well as understanding the effects of policy changes.
We present a novel methodology for recovering meteorite falls observed and constrained by fireball networks, using drones and machine learning algorithms. This approach uses images of the local terrain for a given fall site to train an artificial neu ral network, designed to detect meteorite candidates. We have field tested our methodology to show a meteorite detection rate between 75-97%, while also providing an efficient mechanism to eliminate false-positives. Our tests at a number of locations within Western Australia also showcase the ability for this training scheme to generalize a model to learn localized terrain features. Our model-training approach was also able to correctly identify 3 meteorites in their native fall sites, that were found using traditional searching techniques. Our methodology will be used to recover meteorite falls in a wide range of locations within globe-spanning fireball networks.
Outlier detection is an important task for various data mining applications. Current outlier detection techniques are often manually designed for specific domains, requiring large human efforts of database setup, algorithm selection, and hyper-parame ter tuning. To fill this gap, we present PyODDS, an automated end-to-end Python system for Outlier Detection with Database Support, which automatically optimizes an outlier detection pipeline for a new data source at hand. Specifically, we define the search space in the outlier detection pipeline, and produce a search strategy within the given search space. PyODDS enables end-to-end executions based on an Apache Spark backend server and a light-weight database. It also provides unified interfaces and visualizations for users with or without data science or machine learning background. In particular, we demonstrate PyODDS on several real-world datasets, with quantification analysis and visualization results.
Automated machine learning (AutoML) aims to find optimal machine learning solutions automatically given a machine learning problem. It could release the burden of data scientists from the multifarious manual tuning process and enable the access of do main experts to the off-the-shelf machine learning solutions without extensive experience. In this paper, we review the current developments of AutoML in terms of three categories, automated feature engineering (AutoFE), automated model and hyperparameter learning (AutoMHL), and automated deep learning (AutoDL). State-of-the-art techniques adopted in the three categories are presented, including Bayesian optimization, reinforcement learning, evolutionary algorithm, and gradient-based approaches. We summarize popular AutoML frameworks and conclude with current open challenges of AutoML.
As an emerging field, Automated Machine Learning (AutoML) aims to reduce or eliminate manual operations that require expertise in machine learning. In this paper, a graph-based architecture is employed to represent flexible combinations of ML models, which provides a large searching space compared to tree-based and stacking-based architectures. Based on this, an evolutionary algorithm is proposed to search for the best architecture, where the mutation and heredity operators are the key for architecture evolution. With Bayesian hyper-parameter optimization, the proposed approach can automate the workflow of machine learning. On the PMLB dataset, the proposed approach shows the state-of-the-art performance compared with TPOT, Autostacker, and auto-sklearn. Some of the optimized models are with complex structures which are difficult to obtain in manual design.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا