ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine Learning for Drug Overdose Surveillance

325   0   0.0 ( 0 )
 نشر من قبل Daniel B. Neill
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Daniel B. Neill




اسأل ChatGPT حول البحث

We describe two recently proposed machine learning approaches for discovering emerging trends in fatal accidental drug overdoses. The Gaussian Process Subset Scan enables early detection of emerging patterns in spatio-temporal data, accounting for both the non-iid nature of the data and the fact that detecting subtle patterns requires integration of information across multiple spatial areas and multiple time steps. We apply this approach to 17 years of county-aggregated data for monthly opioid overdose deaths in the New York City metropolitan area, showing clear advantages in the utility of discovered patterns as compared to typical anomaly detection approaches. To detect and characterize emerging overdose patterns that differentially affect a subpopulation of the data, including geographic, demographic, and behavioral patterns (e.g., which combinations of drugs are involved), we apply the Multidimensional Tensor Scan to 8 years of case-level overdose data from Allegheny County, PA. We discover previously unidentified overdose patterns which reveal unusual demographic clusters, show impacts of drug legislation, and demonstrate potential for early detection and targeted intervention. These approaches to early detection of overdose patterns can inform prevention and response efforts, as well as understanding the effects of policy changes.



قيم البحث

اقرأ أيضاً

167 - Po-Ming Law , Sana Malik , Fan Du 2020
Machine learning models often make predictions that bias against certain subgroups of input data. When undetected, machine learning biases can constitute significant financial and ethical implications. Semi-automated tools that involve humans in the loop could facilitate bias detection. Yet, little is known about the considerations involved in their design. In this paper, we report on an interview study with 11 machine learning practitioners for investigating the needs surrounding semi-automated bias detection tools. Based on the findings, we highlight four considerations in designing to guide system designers who aim to create future tools for bias detection.
CausalML is a Python implementation of algorithms related to causal inference and machine learning. Algorithms combining causal inference and machine learning have been a trending topic in recent years. This package tries to bridge the gap between th eoretical work on methodology and practical applications by making a collection of methods in this field available in Python. This paper introduces the key concepts, scope, and use cases of this package.
86 - Xiaohan Yang , Qingyin Ge 2019
Our project aims at helping independent musicians to plan their concerts based on the economies of agglomeration in the music industry. Initially, we planned to design an advisory tool for both concert pricing and location selection. Nonetheless, aft er implementing SGD linear regression and support vector regression models, we realized that concert price does not vary significantly according to different music types, concert time, concert location and ticket venues. Therefore, to offer more useful suggestions, we focus on the location choice problem by turning it to a classification task. The overall performance of our classification model is pretty good. After tuning hyperparameters, we discovered the Random Forest gives the best performance, improving the classification result by 316%. This result reveals that we could help independent musicians better locate their concerts to where similar musicians would go, namely a place with higher network effects.
Recently, there have been increasing calls for computer science curricula to complement existing technical training with topics related to Fairness, Accountability, Transparency, and Ethics. In this paper, we present Value Card, an educational toolki t to inform students and practitioners of the social impacts of different machine learning models via deliberation. This paper presents an early use of our approach in a college-level computer science course. Through an in-class activity, we report empirical data for the initial effectiveness of our approach. Our results suggest that the use of the Value Cards toolkit can improve students understanding of both the technical definitions and trade-offs of performance metrics and apply them in real-world contexts, help them recognize the significance of considering diverse social values in the development of deployment of algorithmic systems, and enable them to communicate, negotiate and synthesize the perspectives of diverse stakeholders. Our study also demonstrates a number of caveats we need to consider when using the different variants of the Value Cards toolkit. Finally, we discuss the challenges as well as future applications of our approach.
We introduce Bi-GNN for modeling biological link prediction tasks such as drug-drug interaction (DDI) and protein-protein interaction (PPI). Taking drug-drug interaction as an example, existing methods using machine learning either only utilize the l ink structure between drugs without using the graph representation of each drug molecule, or only leverage the individual drug compound structures without using graph structure for the higher-level DDI graph. The key idea of our method is to fundamentally view the data as a bi-level graph, where the highest level graph represents the interaction between biological entities (interaction graph), and each biological entity itself is further expanded to its intrinsic graph representation (representation graphs), where the graph is either flat like a drug compound or hierarchical like a protein with amino acid level graph, secondary structure, tertiary structure, etc. Our model not only allows the usage of information from both the high-level interaction graph and the low-level representation graphs, but also offers a baseline for future research opportunities to address the bi-level nature of the data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا