ﻻ يوجد ملخص باللغة العربية
The analog nature of computing in Memristive crossbars poses significant issues due to various non-idealities such as: parasitic resistances, non-linear I-V characteristics of the device etc. The non-idealities can have a detrimental impact on the functionality i.e. computational accuracy of crossbars. Past works have explored modeling the non-idealities using analytical techniques. However, several non-idealities have data dependent behavior. This can not be captured using analytical (non data-dependent) models thereby, limiting their suitability in predicting application accuracy. To address this, we propose a Generalized Approach to Emulating Non-Ideality in Memristive Crossbars using Neural Networks (GENIEx), which accurately captures the data-dependent nature of non-idealities. We perform extensive HSPICE simulations of crossbars with different voltage and conductance combinations. Following that, we train a neural network to learn the transfer characteristics of the non-ideal crossbar. Next, we build a functional simulator which includes key architectural facets such as textit{tiling}, and textit{bit-slicing} to analyze the impact of non-idealities on the classification accuracy of large-scale neural networks. We show that GENIEx achieves textit{low} root mean square errors (RMSE) of $0.25$ and $0.7$ for low and high voltages, respectively, compared to HSPICE. Additionally, the GENIEx errors are $7times$ and $12.8times$ better than an analytical model which can only capture the linear non-idealities. Further, using the functional simulator and GENIEx, we demonstrate that an analytical model can overestimate the degradation in classification accuracy by $ge 10%$ on CIFAR-100 and $3.7%$ on ImageNet datasets compared to GENIEx.
We propose a technology-independent method, referred to as adjacent connection matrix (ACM), to efficiently map signed weight matrices to non-negative crossbar arrays. When compared to same-hardware-overhead mapping methods, using ACM leads to improv
The possibility of using non-deterministic circuit components has been gaining significant attention in recent years. The modeling and simulation of their circuits require novel approaches, as now the state of a circuit at an arbitrary moment in time
There is widespread interest in emerging technologies, especially resistive crossbars for accelerating Deep Neural Networks (DNNs). Resistive crossbars offer a highly-parallel and efficient matrix-vector-multiplication (MVM) operation. MVM being the
Spiking Neural Networks (SNNs) offer an event-driven and more biologically realistic alternative to standard Artificial Neural Networks based on analog information processing. This can potentially enable energy-efficient hardware implementations of n
The memristive crossbar aims to implement analog weighted neural network, however, the realistic implementation of such crossbar arrays is not possible due to limited switching states of memristive devices. In this work, we propose the design of an a