ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond Quantum Noise Spectroscopy: modelling and mitigating noise with quantum feature engineering

66   0   0.0 ( 0 )
 نشر من قبل Akram Youssry
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ability to use quantum technology to achieve useful tasks, be they scientific or industry related, boils down to precise quantum control. In general it is difficult to assess a proposed solution due to the difficulties in characterising the quantum system or device. These arise because of the impossibility to characterise certain components in situ, and are exacerbated by noise induced by the environment and active controls. Here we present a general purpose characterisation and control solution making use of a novel deep learning framework composed of quantum features. We provide the framework, sample data sets, trained models, and their performance metrics. In addition, we demonstrate how the trained model can be used to extract conventional indicators, such as noise power spectra.



قيم البحث

اقرأ أيضاً

Designing optimal control pulses that drive a noisy qubit to a target state is a challenging and crucial task for quantum engineering. In a situation where the properties of the quantum noise affecting the system are dynamic, a periodic characterizat ion procedure is essential to ensure the models are updated. As a result, the operation of the qubit is disrupted frequently. In this paper, we propose a protocol that addresses this challenge by making use of a spectator qubit to monitor the noise in real-time. We develop a quantum machine-learning-based quantum feature engineering approach for designing the protocol. The complexity of the protocol is front-loaded in a characterization phase, which allow real-time execution during the quantum computations. We present the results of numerical simulations that showcase the favorable performance of the protocol.
We show that specific quantum noise, acting as an open-system reservoir for non-locally entangled atoms, can serve to preserve rather than degrade joint coherence. This creates a new type of long-time control over hiding and recovery of quantum entanglement.
A significant problem for current quantum computers is noise. While there are many distinct noise channels, the depolarizing noise model often appropriately describes average noise for large circuits involving many qubits and gates. We present a meth od to mitigate the depolarizing noise by first estimating its rate with a noise-estimation circuit and then correcting the output of the target circuit using the estimated rate. The method is experimentally validated on the simulation of the Heisenberg model. We find that our approach in combination with readout-error correction, randomized compiling, and zero-noise extrapolation produces results close to exact results even for circuits containing hundreds of CNOT gates.
148 - Hendra I. Nurdin 2019
This brief article gives an overview of quantum mechanics as a {em quantum probability theory}. It begins with a review of the basic operator-algebraic elements that connect probability theory with quantum probability theory. Then quantum stochastic processes is formulated as a generalization of stochastic processes within the framework of quantum probability theory. Quantum Markov models from quantum optics are used to explicitly illustrate the underlying abstract concepts and their connections to the quantum regression theorem from quantum optics.
System noise identification is crucial to the engineering of robust quantum systems. Although existing quantum noise spectroscopy (QNS) protocols measure an aggregate amount of noise affecting a quantum system, they generally cannot distinguish betwe en the underlying processes that contribute to it. Here, we propose and experimentally validate a spin-locking-based QNS protocol that exploits the multi-level energy structure of a superconducting qubit to achieve two notable advances. First, our protocol extends the spectral range of weakly anharmonic qubit spectrometers beyond the present limitations set by their lack of strong anharmonicity. Second, the additional information gained from probing the higher-excited levels enables us to identify and distinguish contributions from different underlying noise mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا