ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-level Quantum Noise Spectroscopy

327   0   0.0 ( 0 )
 نشر من قبل Youngkyu Sung
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

System noise identification is crucial to the engineering of robust quantum systems. Although existing quantum noise spectroscopy (QNS) protocols measure an aggregate amount of noise affecting a quantum system, they generally cannot distinguish between the underlying processes that contribute to it. Here, we propose and experimentally validate a spin-locking-based QNS protocol that exploits the multi-level energy structure of a superconducting qubit to achieve two notable advances. First, our protocol extends the spectral range of weakly anharmonic qubit spectrometers beyond the present limitations set by their lack of strong anharmonicity. Second, the additional information gained from probing the higher-excited levels enables us to identify and distinguish contributions from different underlying noise mechanisms.



قيم البحث

اقرأ أيضاً

The ability to use quantum technology to achieve useful tasks, be they scientific or industry related, boils down to precise quantum control. In general it is difficult to assess a proposed solution due to the difficulties in characterising the quant um system or device. These arise because of the impossibility to characterise certain components in situ, and are exacerbated by noise induced by the environment and active controls. Here we present a general purpose characterisation and control solution making use of a novel deep learning framework composed of quantum features. We provide the framework, sample data sets, trained models, and their performance metrics. In addition, we demonstrate how the trained model can be used to extract conventional indicators, such as noise power spectra.
Quantum harmonic oscillators are central to many modern quantum technologies. We introduce a method to determine the frequency noise spectrum of oscillator modes through coupling them to a qubit with continuously driven qubit-state-dependent displace ments. We reconstruct the noise spectrum using a series of different drive phase and amplitude modulation patterns in conjunction with a data-fusion routine based on convex optimization. We apply the technique to the identification of intrinsic noise in the motional frequency of a single trapped ion with sensitivity to fluctuations at the sub-Hz level in a spectral range from quasi-DC up to 50 kHz.
A periodically driven quantum system with avoided-level crossing experiences both non-adiabatic transitions and wave-function phase changes. These result in coherent interference fringes in the systems occupation probabilities. For qubits, with repel ling energy levels, such interference, named after Landau-Zener-Stuckelberg-Majorana, displays arc-shaped resonance lines. We demonstrate that in the case of a multi-level system with an avoided-level crossing of the two lower levels, the shape of the resonances can change from convex arcs to concave heart-shaped and harp-shaped resonance lines. In this way, the shape of such resonance fringes is defined by the whole spectrum, providing insight on the slow-frequency system spectroscopy. As a particular example, we consider this for valley-orbit silicon quantum dots.
219 - A. Fahmi , M. Golshani 2006
Entanglement and entanglement-assisted are useful resources to enhance the mutual information of the Pauli channels, when the noise on consecutive uses of the channel has some partial correlations. In this Paper, we study quantum-communication channe ls in $d$-dimensional systems and derive the mutual information of the quantum channels for maximally entangled states and product states coding with correlated noise. Then, we compare fidelity between these states. Our results show that there exists a certain fidelity memory threshold which depends on the dimension of the Hilbert space $(d)$ and the properties of noisy channels. We calculate the classical capacity of a particular correlated noisy channel and show that in order to achieve Holevo limit, we must use $d$ particles with $d$ degrees of freedom. Our results show that entanglement is a useful means to enhance the mutual information. We choose a special non-maximally entangled state and show that in the quasi-classical depolarizing and quantum depolarizing channels, maximum classical capacity in the higher memory channels is given by the maximally entangled state. Hence, our results show that for high error channels in every degree of memory, maximally entangled states have better mutual information.
We discuss how standard $T_2$-based quantum sensing and noise spectroscopy protocols often give rise to an inadvertent quench of the system or environment being probed: there is an effective sudden change in the environmental Hamiltonian at the start of the sensing protocol. These quenches are extremely sensitive to the initial environmental state, and lead to observable changes in the sensor qubit evolution. We show how these new features can be used to directly access environmental response properties. This enables methods for direct measurement of bath temperature, and methods to diagnose non-thermal equilibrium states. We also discuss techniques that allow one to deliberately control and modulate this quench physics, which enables reconstruction of the bath spectral function. Extensions to non-Gaussian quantum baths are also discussed, as is the direct applicability of our ideas to standard diamond NV-center based quantum sensing platforms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا