ﻻ يوجد ملخص باللغة العربية
Optimization algorithms for solving nonconvex inverse problem have attracted significant interests recently. However, existing methods require the nonconvex regularization to be smooth or simple to ensure convergence. In this paper, we propose a novel gradient descent type algorithm, by leveraging the idea of residual learning and Nesterovs smoothing technique, to solve inverse problems consisting of general nonconvex and nonsmooth regularization with provable convergence. Moreover, we develop a neural network architecture intimating this algorithm to learn the nonlinear sparsity transformation adaptively from training data, which also inherits the convergence to accommodate the general nonconvex structure of this learned transformation. Numerical results demonstrate that the proposed network outperforms the state-of-the-art methods on a variety of different image reconstruction problems in terms of efficiency and accuracy.
We study the first-order convex optimization problem, where we have black-box access to a (not necessarily smooth) function $f:mathbb{R}^n to mathbb{R}$ and its (sub)gradient. Our goal is to find an $epsilon$-approximate minimum of $f$ starting from
We consider the problem of finding local minimizers in non-convex and non-smooth optimization. Under the assumption of strict saddle points, positive results have been derived for first-order methods. We present the first known results for the non-sm
In this paper we propose several adaptive gradient methods for stochastic optimization. Unlike AdaGrad-type of methods, our algorithms are based on Armijo-type line search and they simultaneously adapt to the unknown Lipschitz constant of the gradien
We study adversary-resilient stochastic distributed optimization, in which $m$ machines can independently compute stochastic gradients, and cooperate to jointly optimize over their local objective functions. However, an $alpha$-fraction of the machin
Inspired by the decomposition in the hybrid quantum-classical optimization algorithm we introduced in arXiv:1902.04215, we propose here a new (fully classical) approach to solving certain non-convex integer programs using Graver bases. This method is