ترغب بنشر مسار تعليمي؟ اضغط هنا

Perturbed Proximal Descent to Escape Saddle Points for Non-convex and Non-smooth Objective Functions

134   0   0.0 ( 0 )
 نشر من قبل Zhishen Huang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of finding local minimizers in non-convex and non-smooth optimization. Under the assumption of strict saddle points, positive results have been derived for first-order methods. We present the first known results for the non-smooth case, which requires different analysis and a different algorithm.



قيم البحث

اقرأ أيضاً

We study the first-order convex optimization problem, where we have black-box access to a (not necessarily smooth) function $f:mathbb{R}^n to mathbb{R}$ and its (sub)gradient. Our goal is to find an $epsilon$-approximate minimum of $f$ starting from a point that is distance at most $R$ from the true minimum. If $f$ is $G$-Lipschitz, then the classic gradient descent algorithm solves this problem with $O((GR/epsilon)^{2})$ queries. Importantly, the number of queries is independent of the dimension $n$ and gradient descent is optimal in this regard: No deterministic or randomized algorithm can achieve better complexity that is still independent of the dimension $n$. In this paper we reprove the randomized lower bound of $Omega((GR/epsilon)^{2})$ using a simpler argument than previous lower bounds. We then show that although the function family used in the lower bound is hard for randomized algorithms, it can be solved using $O(GR/epsilon)$ quantum queries. We then show an improved lower bound against quantum algorithms using a different set of instances and establish our main result that in general even quantum algorithms need $Omega((GR/epsilon)^2)$ queries to solve the problem. Hence there is no quantum speedup over gradient descent for black-box first-order convex optimization without further assumptions on the function family.
Optimization algorithms for solving nonconvex inverse problem have attracted significant interests recently. However, existing methods require the nonconvex regularization to be smooth or simple to ensure convergence. In this paper, we propose a nove l gradient descent type algorithm, by leveraging the idea of residual learning and Nesterovs smoothing technique, to solve inverse problems consisting of general nonconvex and nonsmooth regularization with provable convergence. Moreover, we develop a neural network architecture intimating this algorithm to learn the nonlinear sparsity transformation adaptively from training data, which also inherits the convergence to accommodate the general nonconvex structure of this learned transformation. Numerical results demonstrate that the proposed network outperforms the state-of-the-art methods on a variety of different image reconstruction problems in terms of efficiency and accuracy.
One popular trend in meta-learning is to learn from many training tasks a common initialization for a gradient-based method that can be used to solve a new task with few samples. The theory of meta-learning is still in its early stages, with several recent learning-theoretic analyses of methods such as Reptile [Nichol et al., 2018] being for convex models. This work shows that convex-case analysis might be insufficient to understand the success of meta-learning, and that even for non-convex models it is important to look inside the optimization black-box, specifically at properties of the optimization trajectory. We construct a simple meta-learning instance that captures the problem of one-dimensional subspace learning. For the convex formulation of linear regression on this instance, we show that the new task sample complexity of any initialization-based meta-learning algorithm is $Omega(d)$, where $d$ is the input dimension. In contrast, for the non-convex formulation of a two layer linear network on the same instance, we show that both Reptile and multi-task representation learning can have new task sample complexity of $mathcal{O}(1)$, demonstrating a separation from convex meta-learning. Crucially, analyses of the training dynamics of these methods reveal that they can meta-learn the correct subspace onto which the data should be projected.
We investigate 1) the rate at which refined properties of the empirical risk---in particular, gradients---converge to their population counterparts in standard non-convex learning tasks, and 2) the consequences of this convergence for optimization. O ur analysis follows the tradition of norm-based capacity control. We propose vector-valued Rademacher complexities as a simple, composable, and user-friendly tool to derive dimension-free uniform convergence bounds for gradients in non-convex learning problems. As an application of our techniques, we give a new analysis of batch gradient descent methods for non-convex generalized linear models and non-convex robust regression, showing how to use any algorithm that finds approximate stationary points to obtain optimal sample complexity, even when dimension is high or possibly infinite and multiple passes over the dataset are allowed. Moving to non-smooth models we show----in contrast to the smooth case---that even for a single ReLU it is not possible to obtain dimension-independent convergence rates for gradients in the worst case. On the positive side, it is still possible to obtain dimension-independent rates under a new type of distributional assumption.
We introduce SPRING, a novel stochastic proximal alternating linearized minimization algorithm for solving a class of non-smooth and non-convex optimization problems. Large-scale imaging problems are becoming increasingly prevalent due to advances in data acquisition and computational capabilities. Motivated by the success of stochastic optimization methods, we propose a stochastic variant of proximal alternating linearized minimization (PALM) algorithm cite{bolte2014proximal}. We provide global convergence guarantees, demonstrating that our proposed method with variance-reduced stochastic gradient estimators, such as SAGA cite{SAGA} and SARAH cite{sarah}, achieves state-of-the-art oracle complexities. We also demonstrate the efficacy of our algorithm via several numerical examples including sparse non-negative matrix factorization, sparse principal component analysis, and blind image deconvolution.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا