ﻻ يوجد ملخص باللغة العربية
In this paper, we prove topology dependent bounds on the number of rounds needed to compute Functional Aggregate Queries (FAQs) studied by Abo Khamis et al. [PODS 2016] in a synchronous distributed network under the model considered by Chattopadhyay et al. [FOCS 2014, SODA 2017]. Unlike the recent work on computing database queries in the Massively Parallel Computation model, in the model of Chattopadhyay et al., nodes can communicate only via private point-to-point channels and we are interested in bounds that work over an {em arbitrary} communication topology. This is the first work to consider more practically motivated problems in this distributed model. For the sake of exposition, we focus on two special problems in this paper: Boolean Conjunctive Query (BCQ) and computing variable/factor marginals in Probabilistic Graphical Models (PGMs). We obtain tight bounds on the number of rounds needed to compute such queries as long as the underlying hypergraph of the query is $O(1)$-degenerate and has $O(1)$-arity. In particular, the $O(1)$-degeneracy condition covers most well-studied queries that are efficiently computable in the centralized computation model like queries with constant treewidth. These tight bounds depend on a new notion of `width (namely internal-node-width) for Generalized Hypertree Decompositions (GHDs) of acyclic hypergraphs, which minimizes the number of internal nodes in a sub-class of GHDs. To the best of our knowledge, this width has not been studied explicitly in the theoretical database literature. Finally, we consider the problem of computing the product of a vector with a chain of matrices and prove tight bounds on its round complexity (over the finite field of two elements) using a novel min-entropy based argument.
There are distributed graph algorithms for finding maximal matchings and maximal independent sets in $O(Delta + log^* n)$ communication rounds; here $n$ is the number of nodes and $Delta$ is the maximum degree. The lower bound by Linial (1987, 1992)
We use activity networks (task graphs) to model parallel programs and consider series-parallel extensions of these networks. Our motivation is two-fold: the benefits of series-parallel activity networks and the modelling of programming constructs, su
Determining the space complexity of $x$-obstruction-free $k$-set agreement for $xleq k$ is an open problem. In $x$-obstruction-free protocols, processes are required to return in executions where at most $x$ processes take steps. The best known upper
We prove tight network topology dependent bounds on the round complexity of computing well studied $k$-party functions such as set disjointness and element distinctness. Unlike the usual case in the CONGEST model in distributed computing, we fix the
We give tight cell-probe bounds for the time to compute convolution, multiplication and Hamming distance in a stream. The cell probe model is a particularly strong computational model and subsumes, for example, the popular word RAM model. We first