ﻻ يوجد ملخص باللغة العربية
This paper provides upper and lower bounds on the kissing number of congruent radius $r > 0$ spheres in hyperbolic $mathbb{H}^n$ and spherical $mathbb{S}^n$ spaces, for $ngeq 2$. For that purpose, the kissing number is replaced by the kissing function $kappa_H(n, r)$, resp. $kappa_S(n, r)$, which depends on the dimension $n$ and the radius $r$. After we obtain some theoretical upper and lower bounds for $kappa_H(n, r)$, we study their asymptotic behaviour and show, in particular, that $kappa_H(n,r) sim (n-1) cdot d_{n-1} cdot B(frac{n-1}{2}, frac{1}{2}) cdot e^{(n-1) r}$, where $d_n$ is the sphere packing density in $mathbb{R}^n$, and $B$ is the beta-function. Then we produce numeric upper bounds by solving a suitable semidefinite program, as well as lower bounds coming from concrete spherical codes. A similar approach allows us to locate the values of $kappa_S(n, r)$, for $n= 3,, 4$, over subintervals in $[0, pi]$ with relatively high accuracy.
This paper investigates the behaviour of the kissing number $kappa(n, r)$ of congruent radius $r > 0$ spheres in $mathbb{S}^n$, for $ngeq 2$. Such a quantity depends on the radius $r$, and we plot the approximate graph of $kappa(n, r)$ with relativel
This paper provides upper and lower bounds on the kissing number of congruent radius $r > 0$ spheres in $mathbb{H}^n$, for $ngeq 2$. For that purpose, the kissing number is replaced by the kissing function $kappa(n, r)$ which depends on the radius $r
We obtain new topological information about the local structure of collapsing under a lower sectional curvature bound. As an application we prove a new sphere theorem and obtain a partial result towards the conjecture that not every Alexandrov space
We give a new proof of the generalized Minkowski identities relating the higher degree mean curvatures of orientable closed hypersurfaces immersed in a given constant sectional curvature manifold. Our methods rely on a fundamental differential system
High proved the following theorem. If the intersections of any two congruent copies of a plane convex body are centrally symmetric, then this body is a circle. In our paper we extend the theorem of High to spherical, Euclidean and hyperbolic spaces,