ﻻ يوجد ملخص باللغة العربية
We obtain new topological information about the local structure of collapsing under a lower sectional curvature bound. As an application we prove a new sphere theorem and obtain a partial result towards the conjecture that not every Alexandrov space can be obtained as a limit of a sequence of Riemannian manifolds with sectional curvature bounded from below.
We revisit classical eigenvalue inequalities due to Buser, Cheng, and Gromov on closed Riemannian manifolds, and prove t
We study geometric and topological properties of locally compact, geodesically complete spaces with an upper curvature bound. We control the size of singular subsets, discuss homotopical and measure-theoretic stratifications and regularity of the metric structure on a large part.
We prove that a locally compact space with an upper curvature bound is a topological manifold if and only if all of its spaces of directions are homotopy equivalent and not contractible. We discuss applications to homology manifolds, limits of Riemannian manifolds and deduce a sphere theorem.
Measure contraction properties $MCP(K,N)$ are synthetic Ricci curvature lower bounds for metric measure spaces which do not necessarily have smooth structures. It is known that if a Riemannian manifold has dimension $N$, then $MCP(K,N)$ is equivalent
Let $M^n$ be a closed immersed hypersurface lying in a contractible ball $B(p,R)$ of the ambient $(n+1)$-manifold $N^{n+1}$. We prove that, by pinching Heintze-Reillys inequality via sectional curvature upper bound of $B(p,R)$, 1st eigenvalue and mea