ﻻ يوجد ملخص باللغة العربية
By means of the density functional theory in combination with the dynamical mean-field theory, we tried to examine the electronic structure of hexagonal FeGe, in which the Fe atoms form a quasi-2D layered Kagome lattice. We predict that it is a representative Kagome metal characterized by orbital selective Dirac fermions and extremely flat bands. Furthermore, Fes 3$d$ electrons are strongly correlated. They exhibit quite apparent signatures of electronic correlation induced by Hunds rule coupling, such as sizable differentiation in band renormalization, non-Fermi-liquid behavior, spin-freezing state, and spin-orbital separation. Thus, FeGe can be regarded as an ideal platform to study the interplay of Kagome physics and Hundness. 5
A current challenge in condensed matter physics is the realization of strongly correlated, viscous electron fluids. These fluids are not amenable to the perturbative methods of Fermi liquid theory, but can be described by holography, that is, by mapp
We study how multiple charge excitations appear in the resonant inelastic x-ray scattering (RIXS) spectra of metals. The single excitations in the problem are the plasmons and electron-hole pairs, and multi-excitation processes are usually neglected.
Motivated by the recent experiments on the kagome metals $Atext{V}_3text{Sb}_5$ with $A=text{K}, text{Rb}, text{Cs}$, which see onset of charge density wave (CDW) order at $sim$ $100$ K and superconductivity at $sim$ $1$ K, we explore the onset of su
In comparison to 3d or 4f metals, magnetism in actinides remains poorly understood due to experimental complications and the exotic behavior of the 5f states. In particular, plutonium metal is most especially vexing. Over the last five decades theori
This study examines the effect of distorted triangular magnetic interactions in the Kagome lattice. Using a Holstein-Primakoff expansion, we determine the analytical solutions for classical energies and the spin-wave modes for various magnetic config