ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of exchange distortions in the magnetic Kagome lattice

114   0   0.0 ( 0 )
 نشر من قبل Jason Haraldsen Ph.D
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This study examines the effect of distorted triangular magnetic interactions in the Kagome lattice. Using a Holstein-Primakoff expansion, we determine the analytical solutions for classical energies and the spin-wave modes for various magnetic configurations. By understanding the magnetic phase diagram, we characterize the changes in the spin waves and examine the spin distortions of the ferromagnetic (FM), Antiferrimagnetic (AfM), and 120$^{circ}$ phases that are produced by variable exchange interactions and lead to various non-collinear phases, which provides a deeper understanding of the magnetic fingerprints of these configurations for experimental characterization and identification.



قيم البحث

اقرأ أيضاً

186 - T. Yavorskii , W. Apel , 2007
We study the properties of the Heisenberg antiferromagnet with spatially anisotropic nearest-neighbour exchange couplings on the kagome net, i.e. with coupling J in one lattice direction and couplings J along the other two directions. For J/J > 1, th is model is believed to describe the magnetic properties of the mineral volborthite. In the classical limit, it exhibits two kinds of ground states: a ferrimagnetic state for J/J < 1/2 and a large manifold of canted spin states for J/J > 1/2. To include quantum effects self-consistently, we investigate the Sp(N) symmetric generalisation of the original SU(2) symmetric model in the large-N limit. In addition to the dependence on the anisotropy, the Sp(N) symmetric model depends on a parameter kappa that measures the importance of quantum effects. Our numerical calculations reveal that in the kappa-J/J plane, the system shows a rich phase diagram containing a ferrimagnetic phase, an incommensurate phase, and a decoupled chain phase, the latter two with short- and long-range order. We corroborate these results by showing that the boundaries between the various phases and several other features of the Sp(N) phase diagram can be determined by analytical calculations. Finally, the application of a block-spin perturbation expansion to the trimerised version of the original spin-1/2 model leads us to suggest that in the limit of strong anisotropy, J/J >> 1, the ground state of the original model is a collinearly ordered antiferromagnet, which is separated from the incommensurate state by a quantum phase transition.
Magnetic skyrmion textures are realized mainly in non-centrosymmetric, e.g. chiral or polar, magnets. Extending the field to centrosymmetric bulk materials is a rewarding challenge, where the released helicity / vorticity degree of freedom and higher skyrmion density result in intriguing new properties and enhanced functionality. We report here on the experimental observation of a skyrmion lattice (SkL) phase with large topological Hall effect and an incommensurate helical pitch as small as 2.8 nm in metallic Gd3Ru4Al12, which materializes a breathing kagome lattice of Gadolinium moments. The magnetic structure of several ordered phases, including the SkL, is determined by resonant x-ray diffraction as well as small angle neutron scattering. The SkL and helical phases are also observed directly using Lorentz transmission electron microscopy. Among several competing phases, the SkL is promoted over a low-temperature transverse conical state by thermal fluctuations in an intermediate range of magnetic fields.
Magneto-electric multiferroics exemplified by TbMnO3 possess both magnetic and ferroelectric long-range order. The magnetic order is mostly understood, whereas the nature of the ferroelectricity has remained more elusive. Competing models proposed to explain the ferroelectricity are associated respectively with charge transfer and ionic displacements. Exploiting the magneto-electric coupling, we use an electric field to produce a single magnetic domain state, and a magnetic field to induce ionic displacements. Under these conditions, interference charge-magnetic X-ray scattering arises, encoding the amplitude and phase of the displacements. When combined with a theoretical analysis, our data allow us to resolve the ionic displacements at the femtoscale, and show that such displacements make a significant contribution to the zero-field ferroelectric moment.
Raman scattering experiments on CdCr2S4 single crystals show pronounced anomalies in intensity and frequency of optical phonon modes with an onset temperature T*=130 K that coincides with the regime of giant magnetocapacitive effects. A loss of inver sion symmetry and Cr off-centering are deduced from the observation of longitudinal optical and formerly infrared active modes for T<T_c=84 K. The intensity anomalies are attributed to the enhanced electronic polarizability of displacements that modulate the Cr-S distance and respective hybridization. Photo doping leads to an annihilation of the symmetry reduction. Our scenario of multiferroic effects is based on the near degeneracy of polar and nonpolar modes and the additional low energy scale due to hybridization.
Neutron scattering measurements on a magnetoresistive manganite La$_{0.75}$(Ca$_{0.45}$Sr$_{0.55}$)$_{0.25}$MnO$_3$ show that uncorrelated dynamic polaronic lattice distortions are present in both the orthorhombic (O) and rhombohedral (R) paramagneti c phases. The uncorrelated distortions do not exhibit any significant anomaly at the O-to-R transition. Thus, both the paramagnetic phases are inhomogeneous on the nanometer scale, as confirmed further by strong damping of the acoustic phonons and by the anomalous Debye-Waller factors in these phases. In contrast, recent x-ray measurements and our neutron data show that polaronic correlations are present only in the O phase. In optimally doped manganites, the R phase is metallic, while the O paramagnetic state is insulating (or semiconducting). These measurements therefore strongly suggest that the {it correlated} lattice distortions are primarily responsible for the insulating character of the paramagnetic state in magnetoresistive manganites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا