ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase-based Variant Maximum Likelihood Positioning for Passive UHF-RFID Tags

63   0   0.0 ( 0 )
 نشر من قبل Chenglong Li
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Radio frequency identification (RFID) technology brings tremendous advancement in Internet-of-Things, especially in supply chain and smart inventory management. Phase-based passive ultra high frequency RFID tag localization has attracted great interest, due to its insensitivity to the propagation environment and tagged object properties compared with the signal strength based method. In this paper, a phase-based maximum-likelihood tag positioning estimation is proposed. To mitigate the phase uncertainty, the likelihood function is reconstructed through trigonometric transformation. Weights are constructed to reduce the impact of unexpected interference and to augment the positioning performance. The experiment results show that the proposed algorithms realize fine-grained tag localization, which achieve centimeter-level lateral accuracy, and less than 15-centimeters vertical accuracy along the altitude of the racks.



قيم البحث

اقرأ أيضاً

For smart clothing integration with the wireless system based on radio frequency (RF) backscattering, we demonstrate an ultra-high frequency (UHF) antenna constructed from embroidered conductive threads. Sewn into a fabric backing, the T-match antenn a design mimics a commercial UHF RFID tag, which was also used for comparative testing. Bonded to the fabric antenna is the integrated circuit chip dissected from another commercial RFID tag, which allows for testing the tags under normal EPC Gen 2 operating conditions. We find that, despite of the high resistive loss of the antenna and inexact impedance matching, the fabric antenna works reasonably well as a UHF antenna both in standalone RFID testing, and during variety of ways of wearing under sweaters or as wristbands. The embroidering pattern does not affect much the feel and comfort from either side of the fabrics by our sewing method.
We present a new vision for smart objects and the Internet of Things wherein mobile robots interact with wirelessly-powered, long-range, ultra-high frequency radio frequency identification (UHF RFID) tags outfitted with sensing capabilities. We explo re the technology innovations driving this vision by examining recently-commercialized sensor tags that could be affixed-to or embedded-in objects or the environment to yield true embodied intelligence. Using a pair of autonomous mobile robots outfitted with UHF RFID readers, we explore several potential applications where mobile robots interact with sensor tags to perform tasks such as: soil moisture sensing, remote crop monitoring, infrastructure monitoring, water quality monitoring, and remote sensor deployment.
Radio Frequency Identification (RFID) technology one of the most promising technologies in the field of ubiquitous computing. Indeed, RFID technology may well replace barcode technology. Although it offers many advantages over other identification sy stems, there are also associated security risks that are not easy to be addressed. When designing a real lightweight authentication protocol for low cost RFID tags, a number of challenges arise due to the extremely limited computational, storage and communication abilities of Low-cost RFID tags. This paper proposes a real mutual authentication protocol for low cost RFID tags. The proposed protocol prevents passive attacks as active attacks are discounted when designing a protocol to meet the requirements of low cost RFID tags. However the implementation of the protocol meets the limited abilities of low cost RFID tags.
Almost all existing RFID authentication schemes (tag/reader) are vulnerable to relay attacks, because of their inability to estimate the distance to the tag. These attacks are very serious since it can be mounted without the notice of neither the rea der nor the tag and cannot be prevented by cryptographic protocols that operate at the application layer. Distance bounding protocols represent a promising way to thwart relay attacks, by measuring the round trip time of short authenticated messages. All the existing distance bounding protocols use random number generator and hash functions at the tag side which make them inapplicable at low cost RFID tags. This paper proposes a lightweight distance bound protocol for low cost RFID tags. The proposed protocol based on modified version of Gossamer mutual authentication protocol. The implementation of the proposed protocol meets the limited abilities of low-cost RFID tags.
Minimization of a stochastic cost function is commonly used for approximate sampling in high-dimensional Bayesian inverse problems with Gaussian prior distributions and multimodal posterior distributions. The density of the samples generated by minim ization is not the desired target density, unless the observation operator is linear, but the distribution of samples is useful as a proposal density for importance sampling or for Markov chain Monte Carlo methods. In this paper, we focus on applications to sampling from multimodal posterior distributions in high dimensions. We first show that sampling from multimodal distributions is improved by computing all critical points instead of only minimizers of the objective function. For applications to high-dimensional geoscience problems, we demonstrate an efficient approximate weighting that uses a low-rank Gauss-Newton approximation of the determinant of the Jacobian. The method is applied to two toy problems with known posterior distributions and a Darcy flow problem with multiple modes in the posterior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا