ﻻ يوجد ملخص باللغة العربية
Minimization of a stochastic cost function is commonly used for approximate sampling in high-dimensional Bayesian inverse problems with Gaussian prior distributions and multimodal posterior distributions. The density of the samples generated by minimization is not the desired target density, unless the observation operator is linear, but the distribution of samples is useful as a proposal density for importance sampling or for Markov chain Monte Carlo methods. In this paper, we focus on applications to sampling from multimodal posterior distributions in high dimensions. We first show that sampling from multimodal distributions is improved by computing all critical points instead of only minimizers of the objective function. For applications to high-dimensional geoscience problems, we demonstrate an efficient approximate weighting that uses a low-rank Gauss-Newton approximation of the determinant of the Jacobian. The method is applied to two toy problems with known posterior distributions and a Darcy flow problem with multiple modes in the posterior.
This work considers the problem of computing the CANDECOMP/PARAFAC (CP) decomposition of large tensors. One popular way is to translate the problem into a sequence of overdetermined least squares subproblems with Khatri-Rao product (KRP) structure. I
A weakly admissible mesh (WAM) on a continuum real-valued domain is a sequence of discrete grids such that the discrete maximum norm of polynomials on the grid is comparable to the supremum norm of polynomials on the domain. The asymptotic rate of gr
The periodization of a stationary Gaussian random field on a sufficiently large torus comprising the spatial domain of interest is the basis of various efficient computational methods, such as the classical circulant embedding technique using the fas
The unscented Kalman inversion (UKI) method presented in [1] is a general derivative-free approach for the inverse problem. UKI is particularly suitable for inverse problems where the forward model is given as a black box and may not be differentiabl
In this paper, we analyze the convergence behavior of the randomized extended Kaczmarz (REK) method for all types of linear systems (consistent or inconsistent, overdetermined or underdetermined, full-rank or rank-deficient). The analysis shows that