ﻻ يوجد ملخص باللغة العربية
We show that four-dimensional systems may exhibit a topological phase transition analogous to the well-known Berezinskii-Kosterlitz-Thouless vortex unbinding transition in two-dimensional systems. The realisation of an engineered quantum system, where the predicted phase transition shall occur, is also presented. We study a suitable generalization of the sine-Gordon model in four dimensions and the renormalization group flow equation of its couplings, showing that the critical value of the frequency is the square of the corresponding value in $2D$. The value of the anomalous dimension at the critical point is determined ($eta=1/32$) and a conjecture for the universal jump of the superfluid stiffness ($4/pi^2$) presented.
Our aim in this work is to study the nonequilibrium behavior of the topological quantum phase transition in the transverse Wen-plaquette model. We show that under the effect of a nonadiabatic driving the system exhibits a new topological phase and a
We analyze a tight-binding model of ultracold fermions loaded in an optical square lattice and subjected to a synthetic non-Abelian gauge potential featuring both a magnetic field and a translationally invariant SU(2) term. We consider in particular
We investigate the role of short-ranged electron-electron interactions in a paradigmatic model of three dimensional topological insulators, using dynamical mean-field theory and focusing on non magnetically ordered solutions. The non-interacting band
Dynamical quantum phase transitions (DQPTs) represent a counterpart in non-equilibrium quantum time evolution of thermal phase transitions at equilibrium, where real time becomes analogous to a control parameter such as temperature. In quenched quant
The study of the Berezinskii-Kosterlitz-Thouless transition in two-dimensional $|varphi|^4$ models can be performed in several representations, and the amplitude-phase (AP) Madelung parametrization is a natural way to study the contribution of densit