ﻻ يوجد ملخص باللغة العربية
The study of the Berezinskii-Kosterlitz-Thouless transition in two-dimensional $|varphi|^4$ models can be performed in several representations, and the amplitude-phase (AP) Madelung parametrization is a natural way to study the contribution of density fluctuations to nonuniversal quantities. We introduce a functional renormalization group scheme in AP representation where amplitude fluctuations are integrated first to yield an effective sine-Gordon model with renormalized superfluid stiffness. By a mapping between the lattice XY and continuum $|varphi|^4$ models, our method applies to both on equal footing. Our approach correctly reproduces the existence of a line of fixed points and of universal thermodynamics and it allows to estimate universal and nonuniversal quantities of the two models, finding good agreement with available Monte Carlo results. The presented approach is flexible enough to treat parameter ranges of experimental relevance.
Understanding the robustness of topological phases of matter in the presence of interactions poses a difficult challenge in modern condensed matter, showing interesting connections to high energy physics. In this work, we leverage these connections t
Using the nonperturbative renormalization group, we study the existence of bound states in the symmetry-broken phase of the scalar $phi^4$ theory in all dimensions between two and four and as a function of the temperature. The accurate description of
We show that four-dimensional systems may exhibit a topological phase transition analogous to the well-known Berezinskii-Kosterlitz-Thouless vortex unbinding transition in two-dimensional systems. The realisation of an engineered quantum system, wher
It is commonly believed that a massive real scalar field $phi$ only mediates short-range interactions on the scale of its Compton wavelength via the Yukawa potential. However, in the nonperturbative regime of nonlinear self coupling, $phi$ can also m
Renormalization group calculations are used to give exact solutions for rigidity percolation on hierarchical lattices. Algebraic scaling transformations for a simple example in two dimensions produce a transition of second order, with an unstable cri