ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanisms of surface nanostructuring of Al2O3 and MgO by grazing incidence irradiation with swift heavy ions

124   0   0.0 ( 0 )
 نشر من قبل Marko Karlusic
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally discovered that Al2O3 and MgO exhibit well-pronounced nanometric modifications on the surfaces when irradiated under grazing incidence with 23 MeV I beam, in contrast to normal incidence irradiation with the same ion beam when no damage was found. Moreover, ions in these two materials produce notably different structures: grooves surrounded with nanohillocks on MgO surfaces vs. smoother, roll-like discontinuous structures on the surfaces of Al2O3. To explain these results, detailed numerical simulations were performed. We identified that a presence of the surface inhibits recrystallization process, thereby preventing transient tracks from recovery, and thus forming observable nanopatterns. Furthermore, a difference in the viscosities in molten states in Al2O3 vs. MgO explains the differences in the created nanostructures. Our results thus provide a deeper understanding of the fundamental processes of surface nanostructuring, potentially allowing for controlled production of periodic surface nanopatterns.



قيم البحث

اقرأ أيضاً

In this paper we show how single layer graphene can be utilized to study swift heavy ion (SHI) modifications on various substrates. The samples were prepared by mechanical exfoliation of bulk graphite onto SrTiO$_3$, NaCl and Si(111), respectively. S HI irradiations were performed under glancing angles of incidence and the samples were analysed by means of atomic force microscopy in ambient conditions. We show that graphene can be used to check whether the irradiation was successful or not, to determine the nominal ion fluence and to locally mark SHI impacts. In case of samples prepared in situ, graphene is shown to be able to catch material which would otherwise escape from the surface.
This paper presents experimental data and analysis of the structural damage caused by swift-heavy ion irradiation of single-crystal diamond. The patterned buried structural damage is shown to generate, via swelling, a mirror-pattern on the sample sur face, which remains largely damage-free. While extensive results are available for light ion implantations, this effect is reported here for the first time in the heavy ion regime, where a completely different range of input parameters (in terms of ion species, energy, stopping power, etc.) is available for customized irradiation. The chosen ion species are Au and Br, in the energy range 10-40 MeV. The observed patterns, as characterized by profilometry and atomic force microscopy, are reported in a series of model experiments, which show swelling patterns ranging from a few nm to above 200 nm. Moreover, a systematic phenomenological modelling is presented, in which surface swelling measurements are correlated to buried crystal damage. A comparison is made with data for light ion implantations, showing good compatibility with the proposed models. The modelling presented in this work can be useful for the design and realization of micropatterned surfaces in single crystal diamond, allowing to generate highly customized structures by combining appropriately chosen irradiation parameters and masks.
We exposed nitrogen-implanted diamonds to beams of swift uranium and gold ions (~1 GeV) and find that these irradiations lead directly to the formation of nitrogen vacancy (NV) centers, without thermal annealing. We compare the photoluminescence inte nsities of swift heavy ion activated NV- centers to those formed by irradiation with low-energy electrons and by thermal annealing. NV- yields from irradiations with swift heavy ions are 0.1 of yields from low energy electrons and 0.02 of yields from thermal annealing. We discuss possible mechanisms of NV-center formation by swift heavy ions such as electronic excitations and thermal spikes. While forming NV centers with low efficiency, swift heavy ions enable the formation of three dimensional NV- assemblies over relatively large distances of tens of micrometers. Further, our results show that NV-center formation is a local probe of (partial) lattice damage relaxation induced by electronic excitations from swift heavy ions in diamond.
In the framework of swift heavy ion - matter interaction, the thermal spike has proved its worth since nearly two decades. This paper deals with the necessary refinement of the computation due to the kind of materials involved i.e. nanomaterials such as multilayered systems or composite films constitued of nanocylinders or nanospheres embedded in matrix. The three dimensional computation of the thermal spike model is applied for the first time in layers containing spherical nanoparticles embedded in a silica matrix. The temperature profile calculated at each point (x,y,z) of the target for times up to $10^{-10}$s allows a possible explanation of the particle shape change under irradiation with swift heavy ions having an energy of several MeV/u.m.a. The comparison made with the former 2D version of the code applied to cylindrical gold nanoparticles confirms the validity of the present 3D version.
We have investigated the deterioration of field effect transistors based on twodimensional materials due to irradiation with swift heavy ions. Devices were prepared with exfoliated single layers of MoS2 and graphene, respectively. They were character ized before and after irradiation with 1.14 GeV U228+2 ions using three different fluences. By electrical characterization, atomic force microscopy and Raman spectroscopy we show that the irradiation leads to significant changes of structural and electrical properties. At the highest fluence of 4 x 102^11 ions/cm^2, the MoS2 transistor is destroyed, while the graphene based device remains operational, albeit with an inferior performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا