ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting swift heavy ion irradiation effects with graphene

160   0   0.0 ( 0 )
 نشر من قبل Marika Schleberger Y
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we show how single layer graphene can be utilized to study swift heavy ion (SHI) modifications on various substrates. The samples were prepared by mechanical exfoliation of bulk graphite onto SrTiO$_3$, NaCl and Si(111), respectively. SHI irradiations were performed under glancing angles of incidence and the samples were analysed by means of atomic force microscopy in ambient conditions. We show that graphene can be used to check whether the irradiation was successful or not, to determine the nominal ion fluence and to locally mark SHI impacts. In case of samples prepared in situ, graphene is shown to be able to catch material which would otherwise escape from the surface.



قيم البحث

اقرأ أيضاً

We have investigated the deterioration of field effect transistors based on twodimensional materials due to irradiation with swift heavy ions. Devices were prepared with exfoliated single layers of MoS2 and graphene, respectively. They were character ized before and after irradiation with 1.14 GeV U228+2 ions using three different fluences. By electrical characterization, atomic force microscopy and Raman spectroscopy we show that the irradiation leads to significant changes of structural and electrical properties. At the highest fluence of 4 x 102^11 ions/cm^2, the MoS2 transistor is destroyed, while the graphene based device remains operational, albeit with an inferior performance.
This paper presents experimental data and analysis of the structural damage caused by swift-heavy ion irradiation of single-crystal diamond. The patterned buried structural damage is shown to generate, via swelling, a mirror-pattern on the sample sur face, which remains largely damage-free. While extensive results are available for light ion implantations, this effect is reported here for the first time in the heavy ion regime, where a completely different range of input parameters (in terms of ion species, energy, stopping power, etc.) is available for customized irradiation. The chosen ion species are Au and Br, in the energy range 10-40 MeV. The observed patterns, as characterized by profilometry and atomic force microscopy, are reported in a series of model experiments, which show swelling patterns ranging from a few nm to above 200 nm. Moreover, a systematic phenomenological modelling is presented, in which surface swelling measurements are correlated to buried crystal damage. A comparison is made with data for light ion implantations, showing good compatibility with the proposed models. The modelling presented in this work can be useful for the design and realization of micropatterned surfaces in single crystal diamond, allowing to generate highly customized structures by combining appropriately chosen irradiation parameters and masks.
The high energy density of electronic excitations due to the impact of swift heavy ions can induce structural modifications in materials. We present a X-ray diffractometer called ALIX, which has been set up at the low-energy IRRSUD beamline of the GA NIL facility, to allow the study of structural modification kinetics as a function of the ion fluence. The X-ray setup has been modified and optimized to enable irradiation by swift heavy ions simultaneously to X-ray pattern recording. We present the capability of ALIX to perform simultaneous irradiation - diffraction by using energy discrimination between X-rays from diffraction and from ion-target interaction. To illustrate its potential, results of sequential or simultaneous irradiation - diffraction are presented in this article to show radiation effects on the structural properties of ceramics. Phase transition kinetics have been studied during xenon ion irradiation of polycrystalline MgO and SrTiO3. We have observed that MgO oxide is radiation-resistant to high electronic excitations, contrary to the high sensitivity of SrTiO3, which exhibits transition from the crystalline to the amorphous state during irradiation. By interpreting the amorphization kinetics of SrTiO3, defect overlapping models are discussed as well as latent track characteristics. Together with a transmission electron microscopy study, we conclude that a single impact model describes the phase transition mechanism.
Many of the proposed future applications of graphene require the controlled introduction of defects into its perfect lattice. Energetic ions provide one way of achieving this challenging goal. Single heavy ions with kinetic energies in the 100 MeV ra nge will produce nanometer-sized defects on dielectric but generally not on crystalline metal surfaces. In a metal the ion-induced electronic excitations are efficiently dissipated by the conduction electrons before the transfer of energy to the lattice atoms sets in. Therefore, graphene is not expected to be irradiation sensitive beyond the creation of point defects. Here we show that graphene on a dielectric substrate sustains major modifications if irradiated under oblique angles. Due to a combination of defect creation in the graphene layer and hillock creation in the substrate, graphene is split and folded along the ion track yielding double layer nanoribbons. Our results indicate that the radiation hardness of graphene devices is questionable but also open up a new way of introducing extended low-dimensional defects in a controlled way.
The single crystal of tris(thiourea)zinc sulphate (Zn[CS(NH2)2]3SO4) was irradiated by 150 MeV Au9+ swift heavy ions and analyzed in comparison with pure crystal for crystalline perfection and optical properties. The Fourier transform infrared and x- ray powder diffraction inferred that swift ions lead the disordering and breaking of molecular bonds in lattice without formation of new structural phases. High resolution X-ray diffraction (HRXRD) revealed the abundance of point defects, and formation of mosaics and low angle grain boundaries in the irradiated region of crystal. The swift ion irradiation found to affect the lattice vibrational modes and functional groups significantly. The defects induced by heavy ions act as the color centers and resulted in enhance of photoluminescence emission intensity. The optical transparency and band gap found to be decreased.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا