ترغب بنشر مسار تعليمي؟ اضغط هنا

Dzyaloshinskii-Moriya interaction in absence of spin-orbit coupling

320   0   0.0 ( 0 )
 نشر من قبل Ramon Cardias
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In contrast to conventional assumptions, we show that the Dzyaloshinskii-Moriya interaction can be of non-relativistic origin, in particular in materials with a non-collinear magnetic configuration, where non-relativistic contributions can dominate over spin-orbit effects. The weak antiferromagnetic phase of Mn$_{3}$Sn is used to illustrate these findings. Using electronic structure theory as a conceptual platform, all relevant exchange interactions are derived for a general, non-collinear magnetic state. It is demonstrated that non-collinearity influences all three types of exchange interaction and that physically distinct mechanisms, which connect to electron- and spin-density and currents, may be used as a general way to analyze and understand magnetic interactions of the solid state.



قيم البحث

اقرأ أيضاً

170 - Lijun Zhu , Lujun Zhu , Xin Ma 2020
The quantitative roles of the interfacial spin-orbit coupling (SOC) in Dzyaloshinskii-Moriya interaction (DMI) and dampinglike spin-orbit torque ({tau}DL) have remained unsettled after a decade of intensive study. Here, we report a conclusive experim ent evidence that, because of the critical role of the interfacial orbital hybridization, the interfacial DMI is not necessarily a linear function of the interfacial SOC, e.g. at Au1-xPtx/Co interfaces where the interfacial SOC can be tuned significantly via strongly composition (x)-dependent spin-orbit proximity effect without varying the bulk SOC and the electronegativity of the Au1-xPtx layer. We also find that {tau}DL in the Au1-xPtx/Co bilayers varies distinctly from the interfacial SOC as a function of x, indicating no important {tau}DL contribution from the interfacial Rashba-Edelstein effect.
The interfacial Dzyaloshinskii-Moriya interaction (iDMI), surface anisotropy energy, and spin pumping at the Ir/Co interface are experimentally investigated by performing Brillouin light scattering. Contrary to previous reports, we suggest that the s ign of the iDMI at the Ir/Co interface is the same as in the case of the Pt/Co interface. We also find that the magnitude of the iDMI energy density is relatively smaller than in the case of the Pt/Co interface, despite the large strong spin-orbit coupling (SOC) of Ir. The saturation magnetization and the perpendicular magnetic anisotropy (PMA) energy are significantly improved due to a strong SOC. Our findings suggest that an SOC in an Ir/Co system behaves in different ways for iDMI and PMA. Finally, we determine the spin pumping effect at the Ir/Co interface, and it increases the Gilbert damping constant from 0.012 to 0.024 for 1.5 nmthick Co.
Brillouin light spectroscopy is a powerful and robust technique for measuring the interfacial Dzyaloshinskii-Moriya interaction in thin films with broken inversion symmetry. Here we show that the magnon visibility, i.e. the intensity of the inelastic ally scattered light, strongly depends on the thickness of the dielectric seed material - SiO$_2$. By using both, analytical thin-film optics and numerical calculations, we reproduce the experimental data. We therefore provide a guideline for the maximization of the signal by adapting the substrate properties to the geometry of the measurement. Such a boost-up of the signal eases the magnon visualization in ultrathin magnetic films, speeds-up the measurement and increases the reliability of the data.
Chiral spin textures at the interface between ferromagnetic and heavy nonmagnetic metals, such as Neel-type domain walls and skyrmions, have been studied intensively because of their great potential for future nanomagnetic devices. The Dyzaloshinskii -Moriya interaction (DMI) is an essential phenomenon for the formation of such chiral spin textures. In spite of recent theoretical progress aiming at understanding the microscopic origin of the DMI, an experimental investigation unravelling the physics at stake is still required. Here, we experimentally demonstrate the close correlation of the DMI with the anisotropy of the orbital magnetic moment and with the magnetic dipole moment of the ferromagnetic metal. The density functional theory and the tight-binding model calculations reveal that asymmetric electron occupation in orbitals gives rise to this correlation.
The interface between a ferromagnet (FM) or antiferromagnet (AFM) and a heavy metal (HM) results in an antisymmetric exchange interaction known as the interfacial Dzyaloshinskii-Moriya interaction (iDMI) which favors non-collinear spin configurations . The iDMI is responsible for stabilizing noncollinear spin textures such as skyrmions in materials with bulk inversion symmetry. Interfacial DMI values have been previously determined theoretically and experimentally for FM/HM interfaces, and, in this work, values are calculated for the metallic AFM MnPt and the insulating AFM NiO. The heavy metals considered are W, Re, and Au. The effects of the AFM and HM thicknesses are determined. The iDMI values of the MnPt heterolayers are comparable to those of the common FM materials, and those of NiO are lower.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا