ﻻ يوجد ملخص باللغة العربية
In this paper, we study the interactions of electromagnetic waves with a non-dispersive dynamic medium that is temporally dependent. Electromagnetic fields under material time-modulation conserve their momentum but not their energy. We assume a time-variation of the permittivity, permeability and conductivity and derive the appropriate time-domain solutions based on the causality state at a past observation time. We formulate a time-transitioning state matrix and connect the unusual energy transitions of electromagnetic fields in time-varying media with the exceptional point theory. This state-matrix approach allows us to analyze further the electromagnetic waves in terms of parity and time-reversal symmetries and signify parity-time symmetric wave-states without the presence of a spatially symmetric distribution of gain and loss, or any inhomogeneities and material periodicity. This paper provides a useful arsenal to study electromagnetic wave phenomena under time-varying media and points out novel physical insights connecting the resulting energy transitions and electromagnetic modes with exceptional point physics and operator symmetries.
Exceptional points (EPs), at which both eigenvalues and eigenvectors coalesce, are ubiquitous and unique features of non-Hermitian systems. Second-order EPs are by far the most studied due to their abundance, requiring only the tuning of two real par
Planar microcavities allow the control and manipulation of spin-polarization, manifested in phenomena like the optical spin Hall effect due to the intrinsic polarization mode splitting. Here, we study a transparent microcavity with broken rotational
The scattering of electromagnetic pulses is described using a non-singular boundary integral method to solve directly for the field components in the frequency domain, and Fourier transform is then used to obtain the complete space-time behavior. Thi
We uncover the existence of Dirac and exceptional points in waveguides made of anisotropic materials, and study the transition between them. Dirac points in the dispersion diagram appear at propagation directions where the matrix describing the eigen
The finite gain-bandwidth product is a fundamental figure of merit that restricts the operation of standard optical amplifiers. In microcavity setups, this becomes a serious problem due to the narrow bandwidth of the device. Here we introduce a new d