ترغب بنشر مسار تعليمي؟ اضغط هنا

Auto-Tuning Spectral Clustering for Speaker Diarization Using Normalized Maximum Eigengap

146   0   0.0 ( 0 )
 نشر من قبل Taejin Park
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this study, we propose a new spectral clustering framework that can auto-tune the parameters of the clustering algorithm in the context of speaker diarization. The proposed framework uses normalized maximum eigengap (NME) values to estimate the number of clusters and the parameters for the threshold of the elements of each row in an affinity matrix during spectral clustering, without the use of parameter tuning on the development set. Even through this hands-off approach, we achieve a comparable or better performance across various evaluation sets than the results found using traditional clustering methods that apply careful parameter tuning and development data. A relative improvement of 17% in the speaker error rate on the well-known CALLHOME evaluation set shows the effectiveness of our proposed spectral clustering with auto-tuning.



قيم البحث

اقرأ أيضاً

Speaker diarization is one of the actively researched topics in audio signal processing and machine learning. Utterance clustering is a critical part of a speaker diarization task. In this study, we aim to improve the performance of utterance cluster ing by processing multichannel (stereo) audio signals. We generated processed audio signals by combining left- and right-channel audio signals in a few different ways and then extracted embedded features (also called d-vectors) from those processed audio signals. We applied the Gaussian mixture model (GMM) for supervised utterance clustering. In the training phase, we used a parameter sharing GMM to train the model for each speaker. In the testing phase, we selected the speaker with the maximum likelihood as the detected speaker. Results of experiments with real audio recordings of multi-person discussion sessions showed that our proposed method that used multichannel audio signals achieved significantly better performance than a conventional method with mono audio signals.
In this work, we propose deep latent space clustering for speaker diarization using generative adversarial network (GAN) backprojection with the help of an encoder network. The proposed diarization system is trained jointly with GAN loss, latent vari able recovery loss, and a clustering-specific loss. It uses x-vector speaker embeddings at the input, while the latent variables are sampled from a combination of continuous random variables and discrete one-hot encoded variables using the original speaker labels. We benchmark our proposed system on the AMI meeting corpus, and two child-clinician interaction corpora (ADOS and BOSCC) from the autism diagnosis domain. ADOS and BOSCC contain diagnostic and treatment outcome sessions respectively obtained in clinical settings for verbal children and adolescents with autism. Experimental results show that our proposed system significantly outperform the state-of-the-art x-vector based diarization system on these databases. Further, we perform embedding fusion with x-vectors to achieve a relative DER improvement of 31%, 36% and 49% on AMI eval, ADOS and BOSCC corpora respectively, when compared to the x-vector baseline using oracle speech segmentation.
335 - Jixuan Wang , Xiong Xiao , Jian Wu 2020
Deep speaker embedding models have been commonly used as a building block for speaker diarization systems; however, the speaker embedding model is usually trained according to a global loss defined on the training data, which could be sub-optimal for distinguishing speakers locally in a specific meeting session. In this work we present the first use of graph neural networks (GNNs) for the speaker diarization problem, utilizing a GNN to refine speaker embeddings locally using the structural information between speech segments inside each session. The speaker embeddings extracted by a pre-trained model are remapped into a new embedding space, in which the different speakers within a single session are better separated. The model is trained for linkage prediction in a supervised manner by minimizing the difference between the affinity matrix constructed by the refined embeddings and the ground-truth adjacency matrix. Spectral clustering is then applied on top of the refined embeddings. We show that the clustering performance of the refined speaker embeddings outperforms the original embeddings significantly on both simulated and real meeting data, and our system achieves the state-of-the-art result on the NIST SRE 2000 CALLHOME database.
Speaker diarization relies on the assumption that speech segments corresponding to a particular speaker are concentrated in a specific region of the speaker space; a region which represents that speakers identity. These identities are not known a pri ori, so a clustering algorithm is typically employed, which is traditionally based solely on audio. Under noisy conditions, however, such an approach poses the risk of generating unreliable speaker clusters. In this work we aim to utilize linguistic information as a supplemental modality to identify the various speakers in a more robust way. We are focused on conversational scenarios where the speakers assume distinct roles and are expected to follow different linguistic patterns. This distinct linguistic variability can be exploited to help us construct the speaker identities. That way, we are able to boost the diarization performance by converting the clustering task to a classification one. The proposed method is applied in real-world dyadic psychotherapy interactions between a provider and a patient and demonstrated to show improved results.
Speaker Diarization is the problem of separating speakers in an audio. There could be any number of speakers and final result should state when speaker starts and ends. In this project, we analyze given audio file with 2 channels and 2 speakers (on s eparate channel). We train Neural Network for learning when a person is speaking. We use different type of Neural Networks specifically, Single Layer Perceptron (SLP), Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Convolution Neural Network (CNN) we achieve $sim$92% of accuracy with RNN. The code for this project is available at https://github.com/vishalshar/SpeakerDiarization_RNN_CNN_LSTM

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا