ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum to classical crossover of Floquet engineering in correlated quantum systems

91   0   0.0 ( 0 )
 نشر من قبل Michael Sentef
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Light-matter coupling involving classical and quantum light offers a wide range of possibilities to tune the electronic properties of correlated quantum materials. Two paradigmatic results are the dynamical localization of electrons and the ultrafast control of spin dynamics, which have been discussed within classical Floquet engineering and in the deep quantum regime where vacuum fluctuations modify the properties of materials. Here we discuss how these two extreme limits are interpolated by a cavity which is driven to the excited states. In particular, this is achieved by formulating a Schrieffer-Wolff transformation for the cavity-coupled system, which is mathematically analogous to its Floquet counterpart. Some of the extraordinary results of Floquet-engineering, such as the sign reversal of the exchange interaction or electronic tunneling, which are not obtained by coupling to a dark cavity, can already be realized with a single-photon state (no coherent states are needed). The analytic results are verified and extended with numerical simulations on a two-site Hubbard model coupled to a driven cavity mode. Our results generalize the well-established Floquet-engineering of correlated electrons to the regime of quantum light. It opens up a new pathway of controlling properties of quantum materials with high tunability and low energy dissipation.



قيم البحث

اقرأ أيضاً

We develop the Floquet-Magnus expansion for a classical equation of motion under a periodic drive that is applicable to both isolated and open systems. For classical systems, known approaches based on the Floquet theorem fail due to the nonlinearity and the stochasticity of their equations of motion (EOMs) in contrast to quantum ones. Here, employing their master equation, we successfully extend the Floquet methodology to classical EOMs to obtain their Floquet-Magnus expansions, thereby overcoming this difficulty. Our method has a wide range of application from classical to quantum as long as they are described by differential equations including the Langevin equation, the Gross-Pitaevskii equation, and the time-dependent Ginzburg-Landau equation. By analytically evaluating the higher-order terms of the Floquet-Magnus expansion, we find that it is, at least asymptotically, convergent and well approximates the relaxation to their prethermal or non-equilibrium steady states. To support these analytical findings, we numerically analyze two examples: (i) the Kapitza pendulum with friction and (ii) laser-driven magnets described by the stochastic Landau-Lifshitz-Gilbert equation. In both cases, the effective EOMs obtained from their Floquet-Magnus expansions correctly reproduce their exact time evolution for a long time up to their non-equilibrium steady states. In the example of driven magnets, we demonstrate the controlled generations of a macroscopic magnetization and a spin chirality by laser and discuss possible applications to spintronics.
We propose a `Floquet engineering formalism to systematically design a periodic driving protocol in order to stroboscopically realize the desired system starting from a given static Hamiltonian. The formalism is applicable to quantum systems which ha ve an underlying closed Lie-algebraic structure, for example, solid-state systems with noninteracting particles moving on a lattice or its variant described by the ultra-cold atoms moving on an optical lattice. Unlike previous attempts at Floquet engineering, our method produces the desired Floquet Hamiltonian at any driving frequency and is not restricted to the fast or slow driving regimes. The approach is based on Wei-Norman ansatz, which was originally proposed to construct a time-evolution operator for any arbitrary driving. Here, we apply this ansatz to the micro-motion dynamics, defined within one period of the driving, and obtain the driving protocol by fixing the gauge of the micro-motion. To illustrate our idea, we use a two-band system or the systems consisting of two sub-lattices as a testbed. Particularly, we focus on engineering the cross-stitched lattice model that has been a paradigmatic flat-band model.
Counterdiabatic (CD) driving presents a way of generating adiabatic dynamics at arbitrary pace, where excitations due to non-adiabaticity are exactly compensated by adding an auxiliary driving term to the Hamiltonian. While this CD term is theoretica lly known and given by the adiabatic gauge potential, obtaining and implementing this potential in many-body systems is a formidable task, requiring knowledge of the spectral properties of the instantaneous Hamiltonians and control of highly nonlocal multibody interactions. We show how an approximate gauge potential can be systematically built up as a series of nested commutators, remaining well-defined in the thermodynamic limit. Furthermore, the resulting CD driving protocols can be realized up to arbitrary order without leaving the available control space using tools from periodically-driven (Floquet) systems. This is illustrated on few- and many-body quantum systems, where the resulting Floquet protocols significantly suppress dissipation and provide a drastic increase in fidelity.
Recent experimental advances enable the manipulation of quantum matter by exploiting the quantum nature of light. However, paradigmatic exactly solvable models, such as the Dicke, Rabi or Jaynes-Cummings models for quantum-optical systems, are scarce in the corresponding solid-state, quantum materials context. Focusing on the long-wavelength limit for the light, here, we provide such an exactly solvable model given by a tight-binding chain coupled to a single cavity mode via a quantized version of the Peierls substitution. We show that perturbative expansions in the light-matter coupling have to be taken with care and can easily lead to a false superradiant phase. Furthermore, we provide an analytical expression for the groundstate in the thermodynamic limit, in which the cavity photons are squeezed by the light-matter coupling. In addition, we derive analytical expressions for the electronic single-particle spectral function and optical conductivity. We unveil quantum Floquet engineering signatures in these dynamical response functions, such as analogs to dynamical localization and replica side bands, complementing paradigmatic classical Floquet engineering results. Strikingly, the Drude weight in the optical conductivity of the electrons is partially suppressed by the presence of a single cavity mode through an induced electron-electron interaction.
We present a tree-tensor-network-based method to study strongly correlated systems with nonlocal interactions in higher dimensions. Although the momentum-space and quantum-chemist
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا