ﻻ يوجد ملخص باللغة العربية
We use a 27.6 deg$^2$ survey to measure the clustering of $gzK_s$-selected quiescent galaxies at $zsim1.6$, focusing on ultra-massive quiescent galaxies. We find that $zsim1.6$ Ultra-Massive Passively Evolving Galaxies (UMPEGs), which have $K_s(AB)<19.75$ (stellar masses of $M_{stars}$ $>sim 10^{11.4}M_{odot}$ and mean $<$$M_{stars}$$>$ = $10^{11.5}M_{odot}$), cluster more strongly than any other known galaxy population at high redshift. Comparing their correlation length, $r_0 = 29.77 pm 2.75$ $ h^{-1}$Mpc, with the clustering of dark matter halos in the Millennium XXL N-body simulation suggests that these $zsim1.6$ UMPEGs reside in dark matter halos of mass $M_{h}sim10^{14.1}h^{-1}M_{odot}$. Such very massive $zsim1.6$ halos are associated with the ancestors of $zsim0$ massive galaxy clusters such as the Virgo and Coma clusters. Given their extreme stellar masses and lack of companions with comparable mass, we surmise that these UMPEGs could be the already-quenched central massive galaxies of their (proto)clusters. We conclude that with only a modest amount of further growth in their stellar mass, $zsim1.6$ UMPEGs could be the progenitors of some of the massive central galaxies of present-day massive galaxy clusters observed to be already very massive and quiescent near the peak epoch of the cosmic star formation.
We study the environments of a sample of 61 extremely rare z~1.6 Ultra-Massive Passively Evolving Galaxies (UMPEGs: stellar masses M_stars >10^11.5 M_sun) which -- based on clustering analysis presented in Cheema et al. (2020) -- appear to be associa
In our modern understanding of galaxy formation, every galaxy forms within a dark matter halo. The formation and growth of galaxies over time is connected to the growth of the halos in which they form. The advent of large galaxy surveys as well as hi
Clusters, filaments, sheets and voids are the building blocks of the cosmic web. In this study, we present and compare two distinct algorithms for finding cosmic filaments and sheets, a task which is far less well established than the identification
We explore the buildup of quiescent galaxies using a sample of 28,469 massive ($M_star ge 10^{11}$M$_odot$) galaxies at redshifts $1.5<z<3.0$, drawn from a 17.5 deg$^2$ area (0.33 Gpc$^3$ comoving volume at these redshifts). This allows for a robust
Dark matter as a Bose-Einstein condensate, such as the axionic scalar field particles of String Theory, can explain the coldness of dark matter on large scales. Pioneering simulations in this context predict a rich wave-like structure, with a ground