ﻻ يوجد ملخص باللغة العربية
Dark matter as a Bose-Einstein condensate, such as the axionic scalar field particles of String Theory, can explain the coldness of dark matter on large scales. Pioneering simulations in this context predict a rich wave-like structure, with a ground state soliton core in every galaxy surrounded by a halo of excited states that interfere on the de Broglie scale. This de Broglie scale is largest for low mass galaxies as momentum is lower, providing a simple explanation for the wide cores of dwarf spheroidal galaxies. Here we extend these wave dark matter ($psi$DM) predictions to the newly discovered class of Ultra Diffuse Galaxies (UDG) that resemble dwarf spheroidal galaxies but with more extended stellar profiles. Currently the best studied example, DF44, has a uniform velocity dispersion of $simeq 33$km/s, extending to at least 3 kpc, that we show is reproduced by our $psi$DM simulations with a soliton radius of $simeq 0.5$ kpc. In the $psi$DM context, we show the relatively flat dispersion profile of DF44 lies between massive galaxies with compact dense solitons, as may be present in the Milky Way on a scale of 100pc and lower mass galaxies where the velocity dispersion declines centrally within a wide, low density soliton, like Antlia II, of radius 3 kpc.
Our GMRT HI observations of the ultra diffuse galaxy (UDG) UGC 2162, projected $sim$ 300 kpc from the centre of the M77 group, reveal it to a have an extended HI disk (R$_{HI}$/R$_{25}$ $sim$ 3.3) with a moderate rotational velocity (V$_{rot} sim$ 31
A central question regarding Ultra Diffuse Galaxies (UDGs) is whether they are a separate category to Low Surface Brightness (LSB) galaxies, or just their natural continuation towards low stellar masses. In this letter, we show that the rotation curv
Observations of ultra-diffuse galaxies NGC 1052-DF2 and -DF4 show they may contain little dark matter, challenging our understanding of galaxy formation. Using controlled N-body simulations, we explore the possibility that their properties can be rep
We address the origin of Ultra-Diffuse Galaxies (UDGs), which have stellar masses typical of dwarf galaxies but effective radii of Milky Way-sized objects. Their formation mechanism, and whether they are failed $rm L_{star}$ galaxies or diffuse dwarf
We study ultra-diffuse galaxies (UDGs) in zoom in cosmological simulations, seeking the origin of UDGs in the field versus galaxy groups. We find that while field UDGs arise from dwarfs in a characteristic mass range by multiple episodes of supernova