ﻻ يوجد ملخص باللغة العربية
While the breakdown of the perturbation expansion for the many-electron problem has several formal consequences, here we unveil its physical effect: Flipping the sign of the effective electronic interaction in specific scattering channels. By decomposing local and uniform susceptibilities of the Hubbard model via their spectral representations, we prove how entering the non-perturbative regime causes an enhancement of the charge response, ultimately responsible for the phase-separation instabilities close to the Mott MIT. Our analysis opens a new route for understanding phase-transitions in the non-perturbative regime and clarifies why attractive effects emerging from a strong repulsion can induce phase-separations, but not s-wave pairing or charge-density wave instabilities.
We investigate theoretically the features of the Majorana hallmark in the presence of Coulomb repulsion between two quantum dots describing a spinless Aharonov-Bohm-like interferometer, where one of the dots is strongly coupled to a Kitaev wire withi
Dynamic cluster quantum Monte Carlo calculations for a doped two-dimensional extended Hubbard model are used to study the stability and dynamics of $d$-wave pairing when a near neighbor Coulomb repulsion $V$ is present in addition to the on-site Coul
Looking for superconductors with higher transition temperature requires a guiding principle. In conventional superconductors, electrons pair up into Cooper pairs via the retarded attraction mediated by electron-phonon coupling. Higher-frequency phono
High-temperature superconductivity emerges in a host of different quantum materials, often in a region of the phase diagram where the electronic kinetic energy is comparable in magnitude with the electron-electron Coulomb repulsion. Describing such a
Alkali metal dosing (AMD) has been widely used as a way to control doping without chemical substitution. This technique, in combination with angle resolved photoemission spectroscopy (ARPES), often provides an opportunity to observe unexpected phenom