ﻻ يوجد ملخص باللغة العربية
Looking for superconductors with higher transition temperature requires a guiding principle. In conventional superconductors, electrons pair up into Cooper pairs via the retarded attraction mediated by electron-phonon coupling. Higher-frequency phonon (or smaller atomic mass) leads to higher superconducting transition temperature, known as the isotope effect. Furthermore, superconductivity is the only instability channel of the metallic normal state. In correlated systems, the above simple scenario could be easily violated. The strong local interaction is poorly screened, and this conspires with a featured Fermi surface to promote various competing electronic orders, such as spin-density-wave, charge-density-wave and unconventional superconductivity. On top of the various phases, the effect of electron-phonon coupling is an intriguing issue. Using the functional renormalization group, here we investigated the interplay between the electron correlation and electron-phonon coupling in a prototype Hubbard-Holstein model on a square lattice. At half-filling, we found spin-density-wave and charge-density-wave phases and the transition between them, while no superconducting phase arises. Upon finite doping, d-wave/s-wave superconductivity emerges in proximity to spin-density-wave/charge-density-wave phases. Surprisingly, lower-frequency Holstein-phonons are either less destructive, or even beneficial, to the various phases, resulting in a negative isotope effect. We discuss the underlying mechanism behind and the implications of such anomalous effects.
We use an unbiased, continuous-time quantum Monte Carlo method to address the possibility of a zero-temperature phase without charge-density-wave (CDW) order in the Holstein and, by extension, the Holstein-Hubbard model on the half-filled square latt
We analyze the quantum phase diagram of the Holstein-Hubbard model using an asymptotically exact strong-coupling expansion. We find all sorts of interesting phases including a pair-density wave (PDW), a charge 4e (and even a charge 6e) superconductor
We present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a Peierls insulator (PI). The MI regime at
By using variational wave functions and quantum Monte Carlo techniques, we investigate the interplay between electron-electron and electron-phonon interactions in the two-dimensional Hubbard-Holstein model. Here, the ground-state phase diagram is tri
A pair-density-wave (PDW) is a novel superconducting state with an oscillating order parameter. A microscopic mechanism that can give rise to it has been long sought but has not yet been established by any controlled calculation. Here we report a den