ﻻ يوجد ملخص باللغة العربية
Structured convex optimization on weighted graphs finds numerous applications in machine learning and computer vision. In this work, we propose a novel adaptive preconditioning strategy for proximal algorithms on this problem class. Our preconditioner is driven by a sharp analysis of the local linear convergence rate depending on the active set at the current iterate. We show that nested-forest decomposition of the inactive edges yields a guaranteed local linear convergence rate. Further, we propose a practical greedy heuristic which realizes such nested decompositions and show in several numerical experiments that our reconditioning strategy, when applied to proximal gradient or primal-dual hybrid gradient algorithm, achieves competitive performances. Our results suggest that local convergence analysis can serve as a guideline for selecting variable metrics in proximal algorithms.
Total Generalized Variation (TGV) regularization in image reconstruction relies on an infimal convolution type combination of generalized first- and second-order derivatives. This helps to avoid the staircasing effect of Total Variation (TV) regulari
Data clustering is a fundamental problem with a wide range of applications. Standard methods, eg the $k$-means method, usually require solving a non-convex optimization problem. Recently, total variation based convex relaxation to the $k$-means model
We consider total variation minimization for manifold valued data. We propose a cyclic proximal point algorithm and a parallel proximal point algorithm to minimize TV functionals with $ell^p$-type data terms in the manifold case. These algorithms are
We describe an active-set method for the minimization of an objective function $phi$ that is the sum of a smooth convex function and an $ell_1$-regularization term. A distinctive feature of the method is the way in which active-set identification and
The aim of this paper is to address optimality of stochastic control strategies via dynamic programming subject to total variation distance ambiguity on the conditional distribution of the controlled process. We formulate the stochastic control probl