ﻻ يوجد ملخص باللغة العربية
Data clustering is a fundamental problem with a wide range of applications. Standard methods, eg the $k$-means method, usually require solving a non-convex optimization problem. Recently, total variation based convex relaxation to the $k$-means model has emerged as an attractive alternative for data clustering. However, the existing results on its exact clustering property, ie, the condition imposed on data so that the method can provably give correct identification of all cluster memberships, is only applicable to very specific data and is also much more restrictive than that of some other methods. This paper aims at the revisit of total variation based convex clustering, by proposing a weighted sum-of-$ell_1$-norm relating convex model. Its exact clustering property established in this paper, in both deterministic and probabilistic context, is applicable to general data and is much sharper than the existing results. These results provided good insights to advance the research on convex clustering. Moreover, the experiments also demonstrated that the proposed convex model has better empirical performance when be compared to standard clustering methods, and thus it can see its potential in practice.
Structured convex optimization on weighted graphs finds numerous applications in machine learning and computer vision. In this work, we propose a novel adaptive preconditioning strategy for proximal algorithms on this problem class. Our preconditione
We consider total variation minimization for manifold valued data. We propose a cyclic proximal point algorithm and a parallel proximal point algorithm to minimize TV functionals with $ell^p$-type data terms in the manifold case. These algorithms are
We propose a new framework for deriving screening rules for convex optimization problems. Our approach covers a large class of constrained and penalized optimization formulations, and works in two steps. First, given any approximate point, the struct
The aim of this paper is to address optimality of stochastic control strategies via dynamic programming subject to total variation distance ambiguity on the conditional distribution of the controlled process. We formulate the stochastic control probl
A generalized additive model (GAM, Hastie and Tibshirani (1987)) is a nonparametric model by the sum of univariate functions with respect to each explanatory variable, i.e., $f({mathbf x}) = sum f_j(x_j)$, where $x_jinmathbb{R}$ is $j$-th component o