ﻻ يوجد ملخص باللغة العربية
The broad incorporation of microscopic methods is yielding a wealth of information on atomic and mesoscale dynamics of individual atoms, molecules, and particles on surfaces and in open volumes. Analysis of such data necessitates statistical frameworks to convert observed dynamic behaviors to effective properties of materials. Here we develop a method for stochastic reconstruction of effective acting potentials from observed trajectories. Using the Silicon vacancy defect in graphene as a model, we develop a statistical framework to reconstruct the free energy landscape from calculated atomic displacements.
The convergent beam electron diffraction (CBED) patterns of twisted bilayer samples exhibit interference patterns in their CBED spots. Such interference patterns can be treated as off-axis holograms and the phase of the scattered waves, meaning the i
The role of the interface potential on the effective mass of charge carriers is elucidated in this work. We develop a new theoretical formalism using a spatially dependent effective mass that is related to the magnitude of the interface potential. Us
First-principles density functional theory methods are used to investigate the structure, energetics, and vibrational motions of the neutral vacancy defect in diamond. The measured optical absorption spectrum demonstrates that the tetrahedral $T_d$ p
Single GaN nanowires formed spontaneously on a given substrate represent nanoscopic single crystals free of any extended defects. However, due to the high area density of thus formed GaN nanowire ensembles, individual nanowires coalesce with others i
Gapless criteria that can efficiently determine whether a crystal is gapless or not are particularly useful for identifying topological semimetals. In this work, we propose a sufficient gapless criterion for three-dimensional non-interacting crystals