ﻻ يوجد ملخص باللغة العربية
A new method of writing down the path integral for spin-1 Heisenberg antiferromagnetic chain is introduced. In place of the conventional coherent state basis that leads to the non-linear sigma-model, we use a new basis called the fluctuating matrix product states (fMPS) which embodies inter-site entanglement from the outset. It forms an overcomplete set spanning the entire Hilbert space of the spin-1 chain. Saddle-point analysis performed for the bilinear-biquadratic spin model predicts Affeck-Kennedy-Lieb-Tasaki (AKLT) state as the ground state in the vicinity of the AKLT Hamiltonian. Quadratic effective action derived by gradient expansion around the saddle point is free from constraints that plagued the non-linear sigma model and exactly solvable. The obtained excitation modes agree precisely with the single-mode approximation result for the AKLT Hamiltonian. Excitation spectra for other BLBQ Hamiltonians are obtained as well by diagonalizing the quadratic action.
The density-matrix renormalization group method has become a standard computational approach to the low-energy physics as well as dynamics of low-dimensional quantum systems. In this paper, we present a new set of applications, available as part of t
We present a method for simulating the time evolution of one-dimensional correlated electron-phonon systems which combines the time-evolving block decimation algorithm with a dynamical optimization of the local basis. This approach can reduce the com
We prove that ground states of gapped local Hamiltonians on an infinite spin chain can be efficiently approximated by matrix product states with a bond dimension which scales as D~(L-1)/epsilon, where any local quantity on L consecutive spins is approximated to accuracy epsilon.
While general quantum many-body systems require exponential resources to be simulated on a classical computer, systems of non-interacting fermions can be simulated exactly using polynomially scaling resources. Such systems may be of interest in their
Given a (2+1)D fermionic topological order and a symmetry fractionalization class for a global symmetry group $G$, we show how to construct a (3+1)D topologically invariant path integral for a fermionic $G$ symmetry-protected topological state ($G$-F