ﻻ يوجد ملخص باللغة العربية
We analyze alternating minimization for column space recovery of a partially observed, approximately low rank matrix with a growing number of columns and a fixed budget of observations per column. In this work, we prove that if the budget is greater than the rank of the matrix, column space recovery succeeds -- as the number of columns grows, the estimate from alternating minimization converges to the true column space with probability tending to one. From our proof techniques, we naturally formulate an active sampling strategy for choosing entries of a column that is theoretically and empirically (on synthetic and real data) better than the commonly studied uniformly random sampling strategy.
Recent studies identified that sequential Recommendation is improved by the attention mechanism. By following this development, we propose Relation-Aware Kernelized Self-Attention (RKSA) adopting a self-attention mechanism of the Transformer with aug
In randomized experiments, interactions between units might generate a treatment diffusion process. This is common when the treatment of interest is an actual object or product that can be shared among peers (e.g., flyers, booklets, videos). For inst
Knowledge distillation (KD) is a well-known method to reduce inference latency by compressing a cumbersome teacher model to a small student model. Despite the success of KD in the classification task, applying KD to recommender models is challenging
Random features provide a practical framework for large-scale kernel approximation and supervised learning. It has been shown that data-dependent sampling of random features using leverage scores can significantly reduce the number of features requir
Random projection is often used to project higher-dimensional vectors onto a lower-dimensional space, while approximately preserving their pairwise distances. It has emerged as a powerful tool in various data processing tasks and has attracted consid