ﻻ يوجد ملخص باللغة العربية
In randomized experiments, interactions between units might generate a treatment diffusion process. This is common when the treatment of interest is an actual object or product that can be shared among peers (e.g., flyers, booklets, videos). For instance, if the intervention of interest is an information campaign realized through the distribution of a video to targeted individuals, some of these treated individuals might share the video they received with their friends. Such a phenomenon is usually unobserved, causing a misallocation of individuals in the two treatment arms: some of the initially untreated units might have actually received the treatment by diffusion. Treatment misclassification can, in turn, introduce a bias in the estimation of the causal effect. Inspired by a recent field experiment on the effect of different types of school incentives aimed at encouraging students to attend cultural events, we present a novel approach to deal with a hidden diffusion process on observed or partially observed networks.Specifically, we develop a simulation-based sensitivity analysis that assesses the robustness of the estimates against the possible presence of a treatment diffusion. We simulate several diffusion scenarios within a plausible range of sensitivity parameters and we compare the treatment effect which is estimated in each scenario with the one that is obtained while ignoring the diffusion process. Results suggest that even a treatment diffusion parameter of small size may lead to a significant bias in the estimation of the treatment effect.
Real-world networks such as social and communication networks are too large to be observed entirely. Such networks are often partially observed such that network size, network topology, and nodes of the original network are unknown. In this paper we
Analyses of environmental phenomena often are concerned with understanding unlikely events such as floods, heatwaves, droughts or high concentrations of pollutants. Yet the majority of the causal inference literature has focused on modelling means, r
Irregular functional data in which densely sampled curves are observed over different ranges pose a challenge for modeling and inference, and sensitivity to outlier curves is a concern in applications. Motivated by applications in quantitative ultras
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however,
Forest-based methods have recently gained in popularity for non-parametric treatment effect estimation. Building on this line of work, we introduce causal survival forests, which can be used to estimate heterogeneous treatment effects in a survival a