ﻻ يوجد ملخص باللغة العربية
We present the first full six-dimensional panoramic portrait of the Sagittarius stream, obtained by searching for wide stellar streams in the Gaia DR2 dataset with the STREAMFINDER algorithm. We use the kinematic behavior of the sample to devise a selection of Gaia RR Lyrae, providing excellent distance measurements along the stream. The proper motion data are complemented with radial velocities from public surveys. We find that the global morphological and kinematic properties of the Sagittarius stream are still reasonably well reproduced by the simple Law & Majewski (2010) model (LM10), although the model overestimates the leading arm and trailing arm distances by up to $sim 15$%. The sample newly reveals the leading arm of the Sagittarius stream as it passes into very crowded regions of the Galactic disk towards the Galactic Anticenter direction. Fortuitously, this part of the stream is almost exactly at the diametrically opposite location from the Galactic Center to the progenitor, which should allow an assessment of the influence of dynamical friction and self-gravity in a way that is nearly independent of the underlying Galactic potential model.
The Sagittarius stream is one of the best tools that we currently have to estimate the mass and shape of our Galaxy. However, assigning membership and obtaining the phase-space distribution of the stars that form the tails is quite challenging. Our g
We reconsider the case for the association of Galactic globular clusters (GCs) to the tidal stream of the Sagittarius dwarf spheroidal galaxy (Sgr dSph), using Gaia DR2 data. We use RR Lyrae to trace the stream in 6D and we select clusters matching t
We use Gaia DR2 data to show that the globular cluster NGC5634 is physically associated with an arm of the Sagittarius Stream, the huge system of tidal tails created by the ongoing disruption of the Sagittarius dwarf spheroidal galaxy (Sgr dSph). Two
Using Gaia DR2 astrometry, we map the kinematic signature of the Galactic stellar warp out to a distance of 7 kpc from the Sun. Combining Gaia DR2 and 2MASS photometry, we identify, via a probabilistic approach, 599 494 upper main sequence stars and
We analyzed the velocity space of the thin and thick-disk Gaia white dwarf population within 100 pc looking for signatures of the Hercules stellar stream. We aimed to identify those objects belonging to the Hercules stream and, by taking advantage of