ﻻ يوجد ملخص باللغة العربية
We study an inhomogeneous random connection model in the connectivity regime. The vertex set of the graph is a homogeneous Poisson point process $mathcal{P}_s$ of intensity $s>0$ on the unit cube $S=left(-frac{1}{2},frac{1}{2}right]^{d},$ $d geq 2$ . Each vertex is endowed with an independent random weight distributed as $W$, where $P(W>w)=w^{-beta}1_{[1,infty)}(w)$, $beta>0$. Given the vertex set and the weights an edge exists between $x,yin mathcal{P}_s$ with probability $left(1 - expleft( - frac{eta W_xW_y}{left(d(x,y)/rright)^{alpha}} right)right),$ independent of everything else, where $eta, alpha > 0$, $d(cdot, cdot)$ is the toroidal metric on $S$ and $r > 0$ is a scaling parameter. We derive conditions on $alpha, beta$ such that under the scaling $r_s(xi)^d= frac{1}{c_0 s} left( log s +(k-1) loglog s +xi+logleft(frac{alphabeta}{k!d} right)right),$ $xi in mathbb{R}$, the number of vertices of degree $k$ converges in total variation distance to a Poisson random variable with mean $e^{-xi}$ as $s to infty$, where $c_0$ is an explicitly specified constant that depends on $alpha, beta, d$ and $eta$ but not on $k$. In particular, for $k=0$ we obtain the regime in which the number of isolated nodes stabilizes, a precursor to establishing a threshold for connectivity. We also derive a sufficient condition for the graph to be connected with high probability for large $s$. The Poisson approximation result is derived using the Steins method.
We study the random connection model driven by a stationary Poisson process. In the first part of the paper, we derive a lace expansion with remainder term in the continuum and bound the coefficients using a new version of the BK inequality. For our main results, we consider thr
Consider a dynamic random geometric social network identified by $s_t$ independent points $x_t^1,ldots,x_t^{s_t}$ in the unit square $[0,1]^2$ that interact in continuous time $tgeq 0$. The generative model of the random points is a Poisson point mea
We study geometric random graphs defined on the points of a Poisson process in $d$-dimensional space, which additionally carry independent random marks. Edges are established at random using the marks of the endpoints and the distance between points
We consider Gaussian approximation in a variant of the classical Johnson-Mehl birth-growth model with random growth speed. Seeds appear randomly in $mathbb{R}^d$ at random times and start growing instantaneously in all directions with a random speed.
We study the critical behavior for percolation on inhomogeneous random networks on $n$ vertices, where the weights of the vertices follow a power-law distribution with exponent $tau in (2,3)$. Such networks, often referred to as scale-free networks,