ﻻ يوجد ملخص باللغة العربية
Consider a dynamic random geometric social network identified by $s_t$ independent points $x_t^1,ldots,x_t^{s_t}$ in the unit square $[0,1]^2$ that interact in continuous time $tgeq 0$. The generative model of the random points is a Poisson point measures. Each point $x_t^i$ can be active or not in the network with a Bernoulli probability $p$. Each pair being connected by affinity thanks to a step connection function if the interpoint distance $|x_t^i-x_t^j|leq a_mathsf{f}^star$ for any $i eq j$. We prove that when $a_mathsf{f}^star=sqrt{frac{(s_t)^{l-1}}{ppi}}$ for $lin(0,1)$, the number of isolated points is governed by a Poisson approximation as $s_ttoinfty$. This offers a natural threshold for the construction of a $a_mathsf{f}^star$-neighborhood procedure tailored to the dynamic clustering of the network adaptively from the data.
We consider an even probability distribution on the $d$-dimensional Euclidean space with the property that it assigns measure zero to any hyperplane through the origin. Given $N$ independent random vectors with this distribution, under the condition
We study non-Bayesian social learning on random directed graphs and show that under mild connectivity assumptions, all the agents almost surely learn the true state of the world asymptotically in time if the sequence of the associated weighted adjace
We study an inhomogeneous random connection model in the connectivity regime. The vertex set of the graph is a homogeneous Poisson point process $mathcal{P}_s$ of intensity $s>0$ on the unit cube $S=left(-frac{1}{2},frac{1}{2}right]^{d},$ $d geq 2$ .
We derive asymptotic properties for a stochastic dynamic network model in a stochastic dynamic population. In the model, nodes give birth to new nodes until they die, each node being equipped with a social index given at birth. During the life of a n
In stochastic geometry there are several instances of threshold phenomena in high dimensions: the behavior of a limit of some expectation changes abruptly when some parameter passes through a critical value. This note continues the investigation of t