ﻻ يوجد ملخص باللغة العربية
If the vorticity field of an ideal fluid is tangent to a foliation, additional conservation laws arise. For a class of zero-helicity vorticity fields the Godbillon-Vey (GV) invariant of foliations is defined and is shown to be an invariant purely of the vorticity, becoming a higher-order helicity-type invariant of the flow. GV non-zero gives both a global topological obstruction to steady flow and, in a particular form, a local obstruction. GV is interpreted as helical compression and stretching of vortex lines. Examples are given where the value of GV is determined by a set of distinguished closed vortex lines.
We show the Godbillon-Vey invariant arises as a `restricted Casimir invariant for three-dimensional ideal fluids associated to a foliation. We compare to a finite-dimensional system, the rattleback, where analogous phenomena occur.
Recently F. Huang [Commun. Theor. Phys. V.42 (2004) 903] and X. Tang and P.K. Shukla [Commun. Theor. Phys. V.49 (2008) 229] investigated symmetry properties of the barotropic potential vorticity equation without forcing and dissipation on the beta-pl
In a particle physics dynamics, we assume a uniform distribution as the physical measure and a measure-theoretic definition of entropy on the velocity configuration space. This distribution is labeled as the physical solution in the remainder of the
We prove a Godbillon-Vey index formula for longitudinal Dirac operators on a foliated bundle with boundary; in particular, we define a Godbillon-Vey eta invariant on the boundary-foliation; this is a secondary invariant for longitudinal Dirac operato
We derive general conditions of slip of a fluid on the boundary. Under these conditions the velocity of the fluid on the immovable boundary is a function of the normal and tangential components of the force acting on the surface of the fluid. A probl