ﻻ يوجد ملخص باللغة العربية
We derive general conditions of slip of a fluid on the boundary. Under these conditions the velocity of the fluid on the immovable boundary is a function of the normal and tangential components of the force acting on the surface of the fluid. A problem on stationary flow of an electrorheological fluid in which the terms of slip are specified on one part of the boundary and surface forces are given on the other is formulated and studied. Existence of a solution of this problem is proved by using the methods of penalty functions, monotonicity and compactness. It is shown that the method of penalty functions and the Galerkin approximations can be used for the approximate solution of the problem under consideration.
We set up and study a coupled problem on stationary non-isothermal flow of electrorheological fluids. The problem consist in finding functions of velocity, pressure and temperature which satisfy the motion equations, the condition of incompressibilit
We develop a model of an electrorheological fluid such that the fluid is considered as an anisotropic one with the viscosity depending on the second invariant of the rate of strain tensor, on the module of the vector of electric field strength, and o
We present a simple one-dimensional Ising-type spin system on which we define a completely asymmetric Markovian single spin-flip dynamics. We study the system at a very low, yet non-zero, temperature and we show that for empty boundary conditions the
In this paper we improve the understanding of the cofactor conditions, which are particular conditions of geometric compatibility between austenite and martensite, that are believed to influence reversibility of martensitic transformations. We also i
A recently proposed approach for avoiding the ultraviolet divergence of Hamiltonians with particle creation is based on interior-boundary conditions (IBCs). The approach works well in the non-relativistic case, that is, for the Laplacian operator. He