ﻻ يوجد ملخص باللغة العربية
Stars and cycles are basic structures in network construction. The former has been well studied in network analysis, while the latter attracted rare attention. A node together with its neighbors constitute a neighborhood star-structure where the basic assumption is two nodes interact through their direct connection. A cycle is a closed loop with many nodes who can influence each other even without direct connection. Here we show their difference and relationship in understanding network structure and function. We define two cycle-based node characteristics, namely cycle number and cycle ratio, which can be used to measure a nodes importance. Numerical analyses on six disparate real networks suggest that the nodes with higher cycle ratio are more important to network connectivity, while cycle number can better quantify a node influence of cycle-based spreading than the common star-based node centralities. We also find that an ordinary network can be converted into a hypernetwork by considering its basic cycles as hyperedges, meanwhile, a new matrix called the cycle number matrix is captured. We hope that this paper can open a new direction of understanding both local and global structures of network and its function.
This letter propose a new model for characterizing traffic dynamics in scale-free networks. With a replotted road map of cities with roads mapped to vertices and intersections to edges, and introducing the road capacity L and its handling ability at
A key measure that has been used extensively in analyzing complex networks is the degree of a node (the number of the nodes neighbors). Because of its discrete nature, when the degree measure was used in analyzing weighted networks, weights were eith
Networks representing complex systems in nature and society usually involve multiple interaction types. These types suggest essential information on the interactions between components, but not all of the existing types are usually discovered. Theref
We study the self-organization of the consonant inventories through a complex network approach. We observe that the distribution of occurrence as well as cooccurrence of the consonants across languages follow a power-law behavior. The co-occurrence n
Cycles, which can be found in many different kinds of networks, make the problems more intractable, especially when dealing with dynamical processes on networks. On the contrary, tree networks in which no cycle exists, are simplifications and usually