ترغب بنشر مسار تعليمي؟ اضغط هنا

DSNAS: Direct Neural Architecture Search without Parameter Retraining

213   0   0.0 ( 0 )
 نشر من قبل Sirui Xie
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

If NAS methods are solutions, what is the problem? Most existing NAS methods require two-stage parameter optimization. However, performance of the same architecture in the two stages correlates poorly. In this work, we propose a new problem definition for NAS, task-specific end-to-end, based on this observation. We argue that given a computer vision task for which a NAS method is expected, this definition can reduce the vaguely-defined NAS evaluation to i) accuracy of this task and ii) the total computation consumed to finally obtain a model with satisfying accuracy. Seeing that most existing methods do not solve this problem directly, we propose DSNAS, an efficient differentiable NAS framework that simultaneously optimizes architecture and parameters with a low-biased Monte Carlo estimate. Child networks derived from DSNAS can be deployed directly without parameter retraining. Comparing with two-stage methods, DSNAS successfully discovers networks with comparable accuracy (74.4%) on ImageNet in 420 GPU hours, reducing the total time by more than 34%. Our implementation is available at https://github.com/SNAS-Series/SNAS-Series.



قيم البحث

اقرأ أيضاً

The time and effort involved in hand-designing deep neural networks is immense. This has prompted the development of Neural Architecture Search (NAS) techniques to automate this design. However, NAS algorithms tend to be slow and expensive; they need to train vast numbers of candidate networks to inform the search process. This could be alleviated if we could partially predict a networks trained accuracy from its initial state. In this work, we examine the overlap of activations between datapoints in untrained networks and motivate how this can give a measure which is usefully indicative of a networks trained performance. We incorporate this measure into a simple algorithm that allows us to search for powerful networks without any training in a matter of seconds on a single GPU, and verify its effectiveness on NAS-Bench-101, NAS-Bench-201, NATS-Bench, and Network Design Spaces. Our approach can be readily combined with more expensive search methods; we examine a simple adaptation of regularised evolutionary search. Code for reproducing our experiments is available at https://github.com/BayesWatch/nas-without-training.
398 - Renqian Luo , Xu Tan , Rui Wang 2020
Neural architecture search (NAS) relies on a good controller to generate better architectures or predict the accuracy of given architectures. However, training the controller requires both abundant and high-quality pairs of architectures and their ac curacy, while it is costly to evaluate an architecture and obtain its accuracy. In this paper, we propose SemiNAS, a semi-supervised NAS approach that leverages numerous unlabeled architectures (without evaluation and thus nearly no cost). Specifically, SemiNAS 1) trains an initial accuracy predictor with a small set of architecture-accuracy data pairs; 2) uses the trained accuracy predictor to predict the accuracy of large amount of architectures (without evaluation); and 3) adds the generated data pairs to the original data to further improve the predictor. The trained accuracy predictor can be applied to various NAS algorithms by predicting the accuracy of candidate architectures for them. SemiNAS has two advantages: 1) It reduces the computational cost under the same accuracy guarantee. On NASBench-101 benchmark dataset, it achieves comparable accuracy with gradient-based method while using only 1/7 architecture-accuracy pairs. 2) It achieves higher accuracy under the same computational cost. It achieves 94.02% test accuracy on NASBench-101, outperforming all the baselines when using the same number of architectures. On ImageNet, it achieves 23.5% top-1 error rate (under 600M FLOPS constraint) using 4 GPU-days for search. We further apply it to LJSpeech text to speech task and it achieves 97% intelligibility rate in the low-resource setting and 15% test error rate in the robustness setting, with 9%, 7% improvements over the baseline respectively.
Graph neural networks (GNN) has been successfully applied to operate on the graph-structured data. Given a specific scenario, rich human expertise and tremendous laborious trials are usually required to identify a suitable GNN architecture. It is bec ause the performance of a GNN architecture is significantly affected by the choice of graph convolution components, such as aggregate function and hidden dimension. Neural architecture search (NAS) has shown its potential in discovering effective deep architectures for learning tasks in image and language modeling. However, existing NAS algorithms cannot be directly applied to the GNN search problem. First, the search space of GNN is different from the ones in existing NAS work. Second, the representation learning capacity of GNN architecture changes obviously with slight architecture modifications. It affects the search efficiency of traditional search methods. Third, widely used techniques in NAS such as parameter sharing might become unstable in GNN. To bridge the gap, we propose the automated graph neural networks (AGNN) framework, which aims to find an optimal GNN architecture within a predefined search space. A reinforcement learning based controller is designed to greedily validate architectures via small steps. AGNN has a novel parameter sharing strategy that enables homogeneous architectures to share parameters, based on a carefully-designed homogeneity definition. Experiments on real-world benchmark datasets demonstrate that the GNN architecture identified by AGNN achieves the best performance, comparing with existing handcrafted models and tradistional search methods.
Recent years have witnessed the popularity of Graph Neural Networks (GNN) in various scenarios. To obtain optimal data-specific GNN architectures, researchers turn to neural architecture search (NAS) methods, which have made impressive progress in di scovering effective architectures in convolutional neural networks. Two preliminary works, GraphNAS and Auto-GNN, have made first attempt to apply NAS methods to GNN. Despite the promising results, there are several drawbacks in expressive capability and search efficiency of GraphNAS and Auto-GNN due to the designed search space. To overcome these drawbacks, we propose the SNAG framework (Simplified Neural Architecture search for Graph neural networks), consisting of a novel search space and a reinforcement learning based search algorithm. Extensive experiments on real-world datasets demonstrate the effectiveness of the SNAG framework compared to human-designed GNNs and NAS methods, including GraphNAS and Auto-GNN.
Machine learning (ML) systems often encounter Out-of-Distribution (OoD) errors when dealing with testing data coming from a distribution different from training data. It becomes important for ML systems in critical applications to accurately quantify its predictive uncertainty and screen out these anomalous inputs. However, existing OoD detection approaches are prone to errors and even sometimes assign higher likelihoods to OoD samples. Unlike standard learning tasks, there is currently no well established guiding principle for designing OoD detection architectures that can accurately quantify uncertainty. To address these problems, we first seek to identify guiding principles for designing uncertainty-aware architectures, by proposing Neural Architecture Distribution Search (NADS). NADS searches for a distribution of architectures that perform well on a given task, allowing us to identify common building blocks among all uncertainty-aware architectures. With this formulation, we are able to optimize a stochastic OoD detection objective and construct an ensemble of models to perform OoD detection. We perform multiple OoD detection experiments and observe that our NADS performs favorably, with up to 57% improvement in accuracy compared to state-of-the-art methods among 15 different testing configurations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا