ﻻ يوجد ملخص باللغة العربية
Recent years have witnessed the popularity of Graph Neural Networks (GNN) in various scenarios. To obtain optimal data-specific GNN architectures, researchers turn to neural architecture search (NAS) methods, which have made impressive progress in discovering effective architectures in convolutional neural networks. Two preliminary works, GraphNAS and Auto-GNN, have made first attempt to apply NAS methods to GNN. Despite the promising results, there are several drawbacks in expressive capability and search efficiency of GraphNAS and Auto-GNN due to the designed search space. To overcome these drawbacks, we propose the SNAG framework (Simplified Neural Architecture search for Graph neural networks), consisting of a novel search space and a reinforcement learning based search algorithm. Extensive experiments on real-world datasets demonstrate the effectiveness of the SNAG framework compared to human-designed GNNs and NAS methods, including GraphNAS and Auto-GNN.
Graph neural networks (GNN) has been successfully applied to operate on the graph-structured data. Given a specific scenario, rich human expertise and tremendous laborious trials are usually required to identify a suitable GNN architecture. It is bec
Graph neural networks (GNNs) have been successfully applied to learning representation on graphs in many relational tasks. Recently, researchers study neural architecture search (NAS) to reduce the dependence of human expertise and explore better GNN
Neural architecture search (NAS) relies on a good controller to generate better architectures or predict the accuracy of given architectures. However, training the controller requires both abundant and high-quality pairs of architectures and their ac
Machine learning (ML) systems often encounter Out-of-Distribution (OoD) errors when dealing with testing data coming from a distribution different from training data. It becomes important for ML systems in critical applications to accurately quantify
We present graph wavelet neural network (GWNN), a novel graph convolutional neural network (CNN), leveraging graph wavelet transform to address the shortcomings of previous spectral graph CNN methods that depend on graph Fourier transform. Different