ترغب بنشر مسار تعليمي؟ اضغط هنا

Scheme-Independent Series for Anomalous Dimensions of Higher-Spin Operators at an Infrared Fixed Point in a Gauge Theory

87   0   0.0 ( 0 )
 نشر من قبل Robert Shrock
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider an asymptotically free vectorial gauge theory, with gauge group $G$ and $N_f$ fermions in a representation $R$ of $G$, having an infrared fixed point of the renormalization group. We calculate scheme-independent series expansions for the anomalous dimensions of higher-spin bilinear fermion operators at this infrared fixed point up to $O(Delta_f^3)$, where $Delta_f$ is an $N_f$-dependent expansion variable. Our general results are evaluated for several special cases, including the case $G={rm SU}(N_c)$ with $R$ equal to the fundamental and adjoint representations.



قيم البحث

اقرأ أيضاً

210 - J. Alanen , K. Kajantie 2009
We use gauge/gravity duality to study the thermodynamics of a field theory with asymptotic freedom in the ultraviolet and a fixed point in the infrared. We find a high temperature quark-gluon phase and a low T conformal unparticle phase. The phase tr ansition between the phases is of first order or continuous, depending on the ratio of the radii of asymptotic AdS5 spaces at T=0 and T=infinity. This is a prediction from a model of gauge/gravity duality, not yet verified on the field theory side.
We determine the non-perturbative gluon condensate of four-dimensional SU(3) gauge theory in a model independent way. This is achieved by carefully subtracting high order perturbation theory results from non-perturbative lattice QCD determinations of the average plaquette. No indications of dimension two condensates are found. The value of the gluon condensate turns out to be of a similar size as the intrinsic ambiguity inherent to its definition.
148 - C. Sturm , Y. Aoki , N.H. Christ 2009
We extend the Rome-Southampton regularization independent momentum-subtraction renormalization scheme(RI/MOM) for bilinear operators to one with a nonexceptional, symmetric subtraction point. Two-point Greens functions with the insertion of quark bil inear operators are computed with scalar, pseudoscalar, vector, axial-vector and tensor operators at one-loop order in perturbative QCD. We call this new scheme RI/SMOM, where the S stands for symmetric. Conversion factors are derived, which connect the RI/SMOM scheme and the MSbar scheme and can be used to convert results obtained in lattice calculations into the MSbar scheme. Such a symmetric subtraction point involves nonexceptional momenta implying a lattice calculation with substantially suppressed contamination from infrared effects. Further, we find that the size of the one-loop corrections for these infrared improved kinematics is substantially decreased in the case of the pseudoscalar and scalar operator, suggesting a much better behaved perturbative series. Therefore it should allow us to reduce the error in the determination of the quark mass appreciably.
We propose to construct a chirally broken model based on the infrared fixed point of a conformal system by raising the mass of some flavors while keeping the others massless. In the infrared limit the massive fermions decouple and the massless fermio ns break chiral symmetry. The running coupling of this system walks and the energy range of walking can be tuned by the mass of the heavy flavors. Renormalization group considerations predict that the spectrum of such a system shows hyperscaling. We have studied a model with four light and eight heavy flavors coupled to SU(3) gauge fields and verified the above expectations. We determined the mass of several hadronic states and found that some of them are in the 2-3 TeV range if the scale is set by the pseudoscalar decay constant $F_pi approx 250$ GeV. The $0^{++}$ scalar state behaves very differently from the other hadronic states. In most of our simulations it is nearly degenerate with the pion and we estimate its mass to be less than half of the vector resonance mass.
Kolmogorov wave turbulence plays an important role for the thermalization process following plasma instabilities in nonabelian gauge theories. We show that classical-statistical simulations in SU(2) gauge theory indicate a Kolmogorov scaling exponent known from scalar models. In the range of validity of resummed perturbation theory this result is shown to agree with analytical estimates. We study the effect of classical-statistical versus quantum corrections and demonstrate that the latter lead to the absence of turbulence in the far ultraviolet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا