ترغب بنشر مسار تعليمي؟ اضغط هنا

Composite Higgs model at a conformal fixed point

70   0   0.0 ( 0 )
 نشر من قبل Oliver Witzel
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose to construct a chirally broken model based on the infrared fixed point of a conformal system by raising the mass of some flavors while keeping the others massless. In the infrared limit the massive fermions decouple and the massless fermions break chiral symmetry. The running coupling of this system walks and the energy range of walking can be tuned by the mass of the heavy flavors. Renormalization group considerations predict that the spectrum of such a system shows hyperscaling. We have studied a model with four light and eight heavy flavors coupled to SU(3) gauge fields and verified the above expectations. We determined the mass of several hadronic states and found that some of them are in the 2-3 TeV range if the scale is set by the pseudoscalar decay constant $F_pi approx 250$ GeV. The $0^{++}$ scalar state behaves very differently from the other hadronic states. In most of our simulations it is nearly degenerate with the pion and we estimate its mass to be less than half of the vector resonance mass.



قيم البحث

اقرأ أيضاً

We provide a unified description, both at the effective and fundamental Lagrangian level, of models of composite Higgs dynamics where the Higgs itself can emerge, depending on the way the electroweak symmetry is embedded, either as a pseudo-Goldstone boson or as a massive excitation of the condensate. We show that, in general, these states mix with repercussions on the electroweak physics and phenomenology. Our results will help clarify the main differences, similarities, benefits and shortcomings of the different ways one can naturally realize a composite nature of the electroweak sector of the Standard Model. We will analyze the minimal underlying realization in terms of fundamental strongly coupled gauge theories supporting the flavor symmetry breaking pattern SU(4)/Sp(4) $sim$ SO(6)/SO(5). The most minimal fundamental description consists of an SU(2) gauge theory with two Dirac fermions transforming according to the fundamental representation of the gauge group. This minimal choice enables us to use recent first principle lattice results to make the first predictions for the massive spectrum for models of composite (Goldstone) Higgs dynamics. These results are of the upmost relevance to guide searches of new physics at the Large Hadron Collider.
Composite Higgs models can be extended to the Planck scale by means of the partially unified partial compositeness (PUPC) framework. We present in detail the Techni-Pati-Salam model, based on a renormalizable gauge theory $SU(8)_{PS}times SU(2)_Ltime s SU(2)_R$. We demonstrate that masses and mixings for all generations of standard model fermions can be obtained via partial compositeness at low energy, with four-fermion operators mediated by either heavy gauge bosons or scalars. The strong dynamics is predicted to be that of a confining $Sp(4)_{rm HC}$ gauge group, with hyper-fermions in the fundamental and two-index anti-symmetric representations, with fixed multiplicities. This motivates for Lattice studies of the Infra-Red near-conformal walking phase, with results that may validate or rule out the model. This is the first complete and realistic attempt at providing an Ultra-Violet completion for composite Higgs models with top partial compositeness. In the baryon-number conserving vacuum, the theory also predicts a Dark Matter candidate, with mass in the few TeV range, protected by semi-integer baryon number.
141 - Puneet Batra , Z. Chacko 2008
Twin Higgs models are economical extensions of the Standard Model that stabilize the electroweak scale. In these theories the Higgs field is a pseudo Nambu-Goldstone boson that is protected against radiative corrections up to scales of order 5 TeV by a discrete parity symmetry. We construct, for the first time, a class of composite twin Higgs models based on confining QCD-like dynamics. These theories naturally incoporate a custodial isospin symmetry and predict a rich spectrum of particles with masses of order a TeV that will be accessible at the LHC.
Several UV complete models of physics beyond the Standard Model are currently under scrutiny, their low-energy dynamics being compared with the experimental data from the LHC. Lattice simulations can play a role in these studies by providing a first principles computations of the low-energy constants that describe this low-energy dynamics. In this work, we study in detail a specific model recently proposed by Ferretti, and discuss the potential impact of lattice calculations.
Mass-split composite Higgs models naturally accommodate the experimental observation of a light 125 GeV Higgs boson and predict a large scale separation to other heavier resonances. We explore the SU(3) gauge system with four light (massless) and six heavy (massive) flavors by performing numerical simulations. Since the underlying system with degenerate and massless ten flavors appears to be infrared conformal, this system inherits conformal hyperscaling and allows to study near-conformal dynamics. Carrying out nonperturbative lattice field theory simulations, we present the low-lying particle spectrum. We demonstrate hyperscaling, predict the anomalous mass dimension of the corresponding conformal fixed point, and show that in the investigated mass regime the data are described by dilaton chiral perturbation theory. The proximity of a conformal infrared fixed point leads to a highly predictive particle spectrum which is quite distinct from QCD. Further we present initial results of our finite temperature investigations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا