ﻻ يوجد ملخص باللغة العربية
The secret to the spectacular flight capabilities of flapping insects lies in their wings, which are often approximated as flat, rigid plates. Real wings are however delicate structures, composed of veins and membranes, and can undergo significant deformation. In the present work, we present detailed numerical simulations of such deformable wings. Our results are obtained with a fluid-structure interaction solver, coupling a mass-spring model for the flexible wing with a pseudo-spectral code solving the incompressible Navier-Stokes equations. We impose the no-slip boundary condition through the volume penalization method; the time-dependent complex geometry is then completely described by a mask function. This allows solving the governing equations of the fluid on a regular Cartesian grid. Our implementation for massively parallel computers allows us to perform high resolution computations with up to 500 million grid points. The mass-spring model uses a functional approach, thus modeling the different mechanical behaviors of the veins and the membranes of the wing. We perform a series of numerical simulations of a flexible revolving bumblebee wing at a Reynolds number Re = 1800. In order to assess the influence of wing flexibility on the aerodynamics, we vary the elasticity parameters and study rigid, flexible and highly flexible wing models. Code validation is carried out by computing classical benchmarks.
Wing flexibility plays an essential role in the aerodynamic performance of insects due to the considerable deformation of their wings during flight under the impact of inertial and aerodynamic forces. These forces come from the complex wing kinematic
A rigorous derivation and validation for linear fluid-structure-interaction (FSI) equations for a rigid-body-motion problem is performed in an Eulerian framework. We show that the added-stiffness terms arising in the formulation of Fanion et al. (200
We investigate the effect of wing twist flexibility on lift and efficiency of a flapping-wing micro air vehicle capable of liftoff. Wings used previously were chosen to be fully rigid due to modeling and fabrication constraints. However, biological w
We study fluid-structure interactions (FSIs) in a long and shallow microchannel, conveying a non-Newtonian fluid, at steady state. The microchannel has a linearly elastic and compliant top wall, while its three other walls are rigid. The fluid flowin
A potential theory is presented for the problem of two moving cylinders, with possibly different radii, large motions, immersed in an perfect stagnant fluid. We show that the fluid force is the superposition of an added mass term, related to the time